October 9, 2024
Prenatal anxiety recognition model integrating multimodal physiological signal
  • Reid, H., Power, M. & Cheshire, K. Factors influencing antenatal depression, anxiety and stress. Br. J. Midwifery 17, 501–508 (2009).

    Article 

    Google Scholar 

  • Van den Bergh PhD, B. The influence of maternal emotions during pregnancy on fetal and neonatal behavior. J. Prenat. Perinat. Psychol. Health 5, 119 (1990).

    Google Scholar 

  • Glover, V. Maternal depression, anxiety and stress during pregnancy and child outcome; What needs to be done. Best Pract. Res. Clin. Obstet. Gynaecol. 28, 25–35 (2014).

    Article 

    Google Scholar 

  • Milgrom, J. et al. Early intervention to prevent adverse child emotional and behavioural development following maternal depression in pregnancy: study protocol for a randomised controlled trial. BMC Psychol. 11, 1–11 (2023).

    Article 

    Google Scholar 

  • Kholghi, M. et al. The significance and limitations of monitoring sleep during pregnancy. In 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), 6826–6830 (IEEE, 2021).

  • Jimah, T. et al. A technology-based pregnancy health and wellness intervention (two happy hearts): Case study. JMIR Formative Res. 5, e30991 (2021).

    Article 

    Google Scholar 

  • Gupta, Y., Kumar, S. & Mago, V. Pregnancy health monitoring system based on biosignal analysis. In 2019 42nd International Conference on Telecommunications and Signal Processing (TSP), 664–667 (IEEE, 2019).

  • Carneiro, M. B., Moreira, M. W., Pereira, S. S., Gallindo, E. L. & Rodrigues, J. J. Recommender system for postpartum depression monitoring based on sentiment analysis. In 2020 IEEE International Conference on E-health Networking, Application & Services (HEALTHCOM), 1–6 (IEEE, 2021).

  • Yan, M. et al. Emotion classification with multichannel physiological signals using hybrid feature and adaptive decision fusion. Biomed. Signal Process. Control 71, 103235 (2022).

    Article 

    Google Scholar 

  • Zhang, X. et al. Emotion recognition from multimodal physiological signals using a regularized deep fusion of kernel machine. IEEE Trans. Cybern. 51, 4386–4399 (2020).

    Article 

    Google Scholar 

  • Bailón, R., Sornmo, L. & Laguna, P. A robust method for ecg-based estimation of the respiratory frequency during stress testing. IEEE Trans. Biomed. Eng. 53, 1273–1285 (2006).

    Article 

    Google Scholar 

  • Buckwalter, J. G. et al. Pregnancy, the postpartum, and steroid hormones: Effects on cognition and mood. Psychoneuroendocrinology 24, 69–84 (1999).

    Article 

    Google Scholar 

  • Khan, M. & Sharma, V. Post-partum depressive episodes and bipolar disorder. Lancet 385, 771–772 (2015).

    Article 

    Google Scholar 

  • Field, T. et al. Prenatal anger effects on the fetus and neonate. J. Obstet. Gynaecol. 22, 260–266 (2002).

    Article 

    Google Scholar 

  • Dunn, C., Hanieh, E., Roberts, R. & Powrie, R. Mindful pregnancy and childbirth: Effects of a mindfulness-based intervention on women’s psychological distress and well-being in the perinatal period. Arch. Womens Ment. Health 15, 139–143 (2012).

    Article 

    Google Scholar 

  • Abera, M. et al. Effects of relaxation interventions during pregnancy on maternal mental health, and pregnancy and newborn outcomes: A systematic review and meta-analysis. PLoS One 19, e0278432 (2024).

    Article 

    Google Scholar 

  • Evans, K., Spiby, H. & Morrell, C. J. Developing a complex intervention to support pregnant women with mild to moderate anxiety: Application of the medical research council framework. BMC Pregnancy Childbirth 20, 1–12 (2020).

    Article 

    Google Scholar 

  • Chang, M.-Y., Chen, C.-H. & Huang, K.-F. Effects of music therapy on psychological health of women during pregnancy. J. Clin. Nurs. 17, 2580–2587 (2008).

    Article 

    Google Scholar 

  • Mckellar, L., Steen, M. & N, L. Capture my mood: A feasibility study to develop a visual scale for women to self-monitor their mental wellbeing following birth. Evid. Based Midwifery 15, 54–59 (2017).

    Google Scholar 

  • Zuccolo, P. F., Xavier, M. O., Matijasevich, A., Polanczyk, G. & Fatori, D. A smartphone-assisted brief online cognitive-behavioral intervention for pregnant women with depression: A study protocol of a randomized controlled trial. Trials 22, 1–19 (2021).

    Article 

    Google Scholar 

  • Vickery, M. et al. Midwives’ views towards women using mhealth and ehealth to self-monitor their pregnancy: A systematic review of the literature. Eur. J. Midwifery 4 (2020).

  • Hantsoo, L. et al. A mobile application for monitoring and management of depressed mood in a vulnerable pregnant population. Psychiatr. Serv. 69, 104–107 (2018).

    Article 

    Google Scholar 

  • Santos, I. S. et al. Validation of the edinburgh postnatal depression scale (epds) in a sample of mothers from the 2004 pelotas birth cohort study. Cad. Saude Publica. 23, 2577–2588 (2007).

    Article 

    Google Scholar 

  • Maruyama, J. M. et al. Maternal depression trajectories in childhood, subsequent maltreatment, and adolescent emotion regulation and self-esteem: the 2004 pelotas birth cohort. Eur. Child Adolesc. Psychiatry 1–11 (2022).

  • Shulman, H. B., D’Angelo, D. V., Harrison, L., Smith, R. A. & Warner, L. The pregnancy risk assessment monitoring system (prams): Overview of design and methodology. Am. J. Public Health 108, 1305–1313 (2018).

    Article 

    Google Scholar 

  • Bachiri, M., Idri, A., Fernández-Alemán, J. L. & Toval, A. Mobile personal health records for pregnancy monitoring functionalities: Analysis and potential. Comput. Methods Programs Biomed. 134, 121–135 (2016).

    Article 

    Google Scholar 

  • Polsky, S. & Garcetti, R. Cgm, pregnancy, and remote monitoring. Diabetes Technol. Ther. 19, S–49 (2017).

  • Santur, Y., Santur, S. G. & Karaköse, M. Architecture and implementation of a smart-pregnancy monitoring system using web-based application. Expert Syst. 37 (2019).

  • Penders, B. J., Altini, M., Van Hoof, C. & Dy, E. Wearable sensors for healthier.

  • Moreira, M. W. L., Rodrigues, J. J. P. C., Oliveira, A. M. B. & Saleem, K. Smart mobile system for pregnancy care using body sensors. In 2016 International Conference on Selected Topics in Mobile & Wireless Networking (MoWNeT), 1–4. (2016).

  • Yu, Q., Aris, I. M., Tan, K. H. & Li, L.-J. Application and utility of continuous glucose monitoring in pregnancy: A systematic review. Front. Endocrinol. 10, 697 (2019).

    Article 

    Google Scholar 

  • Olivarez, S. A. et al. Prospective trial on obstructive sleep apnea in pregnancy and fetal heart rate monitoring. Am. J. Obstet. Gynecol. 202, 552-e1 (2010).

    Article 

    Google Scholar 

  • Ansari, F. A. & Peddi, P. Non-intrusive stress detection based on temporal emotion analysis in videos applying machine learning. Turk. Online J. Qual. Inquiry13 (2022).

  • Kurniawan, H., Maslov, A. V. & Pechenizkiy, M. Stress detection from speech and galvanic skin response signals. In Proceedings of the 26th IEEE International Symposium on Computer-Based Medical Systems, 209–214. (2013).

  • Jang, E.-H., Park, B.-J., Kim, S.-H., Eum, Y. & Sohn, J.-H. Identification of the optimal emotion recognition algorithm using physiological signals. In 2011 2nd International Conference on Engineering and Industries (ICEI), 1–6 (2011).

  • Bornoiu, I.-V. & Grigore, O. Kohonen neural network stress detection using only electrodermal activity features. Adv. Electr. Comput. Eng. 14, 71–78 (2014).

    Article 

    Google Scholar 

  • Mokhayeri, F., Akbarzadeh-T, M.-R. & Toosizadeh, S. Mental stress detection using physiological signals based on soft computing techniques. In 2011 18th Iranian Conference of Biomedical Engineering (ICBME), 232–237. (2011).

  • Yoo, S. K. et al. Neural network based emotion estimation using heart rate variability and skin resistance. In Advances in Natural Computation (eds Wang, L. et al.) 818–824 (Springer, 2005).

  • Pollreisz, D. & Taherinejad, N. A simple algorithm for emotion recognition, using physiological signals of a smart watch. 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) 2353–2356 (2017).

  • Gupta, P., Balaji, S. A., Jain, S. & Yadav, R. Emotion recognition during social interactions using peripheral physiological signals. In Computer Networks and Inventive Communication Technologies: Proceedings of Fourth ICCNCT 2021, 99–112 (Springer, 2022).

  • Klinkenberg, A. V. et al. Heart rate variability changes in pregnant and non-pregnant women during standardized psychosocial stress. Acta Obstet. Gynecol. Scand. 88, 77–82 (2009).

    Article 

    Google Scholar 

  • Xue, M. et al. Affectivewall: designing collective stress-related physiological data visualization for reflection. IEEE Access 7, 131289–131303 (2019).

    Article 

    Google Scholar 

  • Yu, B., Feijs, L. M., Funk, M. & Hu, J. Designing auditory display of heart rate variability in biofeedback context. In ICAD, 294–298 (2015).

  • Laohakangvalvit, T. et al. Study on the psychological states of olfactory stimuli using electroencephalography and heart rate variability. Sensors 23, 4026 (2023).

    Article 
    ADS 

    Google Scholar 

  • Lee, J. & Finkelstein, J. Evaluation of a portable stress management device. In Driving Quality in Informatics: Fulfilling the Promise, 248–252 (IOS Press, 2015).

  • DUAN, H. et al. Acute stress: Induction, measurement and effect analysis. Adv. Psychol. Sci. 25, 1780 (2017).

    Article 

    Google Scholar 

  • Movalled, K., Sani, A., Nikniaz, L. & Ghojazadeh, M. The impact of sound stimulations during pregnancy on fetal learning: A systematic review. BMC Pediatr. 23, 183 (2023).

    Article 

    Google Scholar 

  • Leslie Cameron, E. Measures of human olfactory perception during pregnancy. Chem. Senses 32, 775–782 (2007).

    Article 

    Google Scholar 

  • Nordin, S., Broman, D. A., Olofsson, J. K. & Wulff, M. A longitudinal descriptive study of self-reported abnormal smell and taste perception in pregnant women. Chem. Senses 29, 391–402 (2004).

    Article 

    Google Scholar 

  • Hall, K. et al. Mothers’ accounts of the impact of being in nature on postnatal wellbeing: A focus group study. BMC Womens Health 23, 32 (2023).

    Article 

    Google Scholar 

  • Al-Mutawtah, M., Campbell, E., Kubis, H.-P. & Erjavec, M. Women’s experiences of social support during pregnancy: A qualitative systematic review. BMC Pregnancy Childbirth 23, 782 (2023).

    Article 

    Google Scholar 

  • Ballantyne, A. & Rogers, W. Pregnancy, vulnerability, and the risk of exploitation in clinical research. In Clinical Research Involving Pregnant Women 139–159 (2016).

  • Wang, D. et al. Dernet: Driver emotion recognition using onboard camera. IEEE Intell. Transp. Syst. Mag. 16, 117–132. (2024).

    Article 

    Google Scholar 

  • McCarthy, C., Pradhan, N., Redpath, C. & Adler, A. Validation of the empatica e4 wristband. In 2016 IEEE EMBS International Student Conference (ISC), 1–4, (2016).

  • Prachyabrued, M., Wattanadhirach, D., Dudrow, R. B., Krairojananan, N. & Fuengfoo, P. Toward virtual stress inoculation training of prehospital healthcare personnel: A stress-inducing environment design and investigation of an emotional connection factor. In 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), 671–679. (2019).

  • Rezaei, B., Lowe, J., Yee, J. R., Porges, S. & Ostadabbas, S. Non-contact automatic respiration monitoring in restrained rodents. In 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 4946–4950. (2016).

  • Taelman, J. et al. Stress during pregnancy: Is the autonomic nervous system influenced by anxiety? In 2010 Computing in Cardiology, 725–728 (2010).

  • Onan, A. & Korukoğlu, S. A feature selection model based on genetic rank aggregation for text sentiment classification. J. Inf. Sci. 43, 25–38 (2017).

    Article 

    Google Scholar 

  • Rangkuti, F. R. S., Fauzi, M. A., Sari, Y. A. & Sari, E. D. L. Sentiment analysis on movie reviews using ensemble features and pearson correlation based feature selection. In 2018 International Conference on Sustainable Information Engineering and Technology (SIET), 88–91 (IEEE, 2018).

  • Yuanyuan, S., Yongming, W., Lili, G., Zhongsong, M. & Shan, J. The comparison of optimizing svm by ga and grid search. In 2017 13th IEEE International Conference on Electronic Measurement & Instruments (ICEMI), 354–360. (2017).

  • Semeraro, A., Vilella, S. & Ruffo, G. Pyplutchik: Visualising and comparing emotion-annotated corpora. PLoS One 16, e0256503 (2021).

    Article 

    Google Scholar 

  • Budaniya, M., Mishra, A. K., Rai, A. C. & Dasgupta, M. Effects of indoor plants on occupants’ emotional-state, performance, and perceived comfort in an open-plan seating space. In Performance, and Perceived Comfort in an Open-Plan Seating Space.

  • McLeish, J. & Redshaw, M. Mothers’ accounts of the impact on emotional wellbeing of organised peer support in pregnancy and early parenthood: A qualitative study. BMC Pregnancy Childbirth 17, 1–14 (2017).

    Article 

    Google Scholar 

  • Kazmierczak, M., Kielbratowska, B., Pastwa-Wojciechowska, B. & Preis, K. Couvade syndrome among polish expectant fathers. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 19, 132 (2013).

    Google Scholar 

  • Paulson, J. F. & Bazemore, S. D. Prenatal and postpartum depression in fathers and its association with maternal depression: A meta-analysis. JAMA 303, 1961–1969 (2010).

    Article 

    Google Scholar 

  • Cobb, S. Presidential address-1976. Social support as a moderator of life stress. Psychosom. Med. 385, 300–14 (1976).

    Article 

    Google Scholar 

  • Corrigan, L., Moran, P., McGrath, N., Eustace-Cook, J. & Daly, D. The characteristics and effectiveness of pregnancy yoga interventions: A systematic review and meta-analysis. BMC Pregnancy Childbirth 22, 250 (2022).

    Article 

    Google Scholar 

  • Dilrukshi, I. & De Zoysa, K. Twitter news classification: Theoretical and practical comparison of svm against naive bayes algorithms. In 2013 International Conference on Advances in ICT for Emerging Regions (ICTer), 278–278. (2013).

  • Hanczar, B., Bourgeais, V. & Zehraoui, F. Assessment of deep learning and transfer learning for cancer prediction based on gene expression data. BMC Bioinform. 23, 262 (2022).

    Article 

    Google Scholar 

  • Lafraxo, S., Ansari, M. E. & Charfi, S. Melanet: An effective deep learning framework for melanoma detection using dermoscopic images. Multimed. Tools Appl. 81, 16021–16045 (2022).

    Article 

    Google Scholar 

  • Zhai, J. & Barreto, A. B. Stress detection in computer users through non-invasive monitoring of physiological signals. Biomed. Sci. Instrum. 42, 495–500 (2006).

    Google Scholar 

  • Sung, M. & Pentland, A. P. Pokermetrics: Stress and lie detection through non-invasive physiological sensing (2005).

  • Katsis, C. D., Katertsidis, N., Ganiatsas, G. & Fotiadis, D. I. Toward emotion recognition in car-racing drivers: A biosignal processing approach. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 38, 502–512 (2008).

    Article 

    Google Scholar 

  • Chen, Y., Jia, Z., Hirota, K. & Dai, Y. A multimodal emotion perception model based on context-aware decision-level fusion. In 2022 41st Chinese Control Conference (CCC), 7332–7337. (2022).

  • Fu, L., Wang, C. & Zhang, Y. Classifier fusion for speech emotion recognition. In 2010 IEEE International Conference on Intelligent Computing and Intelligent Systems, vol. 3, 407–410 (2010).

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *