February 1, 2026
Engineering human endometrial model systems in reproductive health and disease
  • Thompson, R. E., Premanandan, C., Pukazhenthi, B. S. & Whitlock, B. K. A review of in vivo and in vitro studies of the mare endometrium. Anim. Reprod. Sci. 222, 106605 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ramathal, C. Y., Bagchi, I. C., Taylor, R. N. & Bagchi, M. K. Endometrial decidualization: of mice and men. Semin. Reprod. Med. 28, 017–026 (2010).

    Article 
    CAS 

    Google Scholar 

  • Nayak, N. R. & Brenner, R. M. Vascular proliferation and vascular endothelial growth factor expression in the rhesus macaque endometrium. J. Clin. Endocrinol. Metab. 87, 1845–1855 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Giudice, L. C. & Kao, L. C. Endometriosis. LANCET 364, 1789–1799 (2004).

    Article 
    PubMed 

    Google Scholar 

  • Su, R. W. & Fazleabas, A. T. Implantation and establishment of pregnancy in human and nonhuman primates. Adv. Anat. Embryol. Cell Biol. 216, 189–213 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dilworth, M. R. & Sibley, C. P. Review: transport across the placenta of mice and women. Placenta 34, S34–S39 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Carter, A. M., Enders, A. C. & Pijnenborg, R. The role of invasive trophoblast in implantation and placentation of primates. Philos. Trans. R. Soc. B-Biol. Sci. 370, 20140070 (2015).

    Article 

    Google Scholar 

  • Evans, J. et al. Fertile ground: human endometrial programming and lessons in health and disease. Nat. Rev. Endocrinol. 12, 654–667 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Conings, S., Amant, F., Annaert, P. & Van Calsteren, K. Integration and validation of the ex vivo human placenta perfusion model. J. Pharmacol. Toxicol. Methods 88, 25–31 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bhatia, S. N. & Ingber, D. E. Microfluidic organs-on-chips. Nat. Biotechnol. 32, 760–772 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Esch, E. W., Bahinski, A. & Huh, D. Organs-on-chips at the frontiers of drug discovery. Nat. Rev. Drug Discov. 14, 248–260 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Huh, D., Torisawa, Y. S., Hamilton, G. A., Kim, H. J. & Ingber, D. E. Microengineered physiological biomimicry: organs-on-chips. Lab Chip 12, 2156–2164 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Campo, H. et al. A new tissue-agnostic microfluidic device to model physiology and disease: the lattice platform. Lab Chip 23, 4821–4833 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Huh, D. et al. Reconstituting organ-level lung functions on a chip. Science 328, 1662–1668 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kim, H. J., Huh, D., Hamilton, G. & Ingber, D. E. Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab Chip 12, 2165–2174 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Deng, J. et al. Engineered liver-on-a-chip platform to mimic liver functions and its biomedical applications: a review. Micromachines 10, 676 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Clevers, H. Modeling development and disease with organoids. Cell 165, 1586–1597 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fatehullah, A., Tan, S. H. & Barker, N. Organoids as an in vitro model of human development and disease. Nat. Cell Biol. 18, 246–254 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Lancaster, M. A. & Knoblich, J. A. Organogenesis in a dish: modeling development and disease using organoid technologies. Science 345, 1247125 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Fitzgerald, H. C., Schust, D. J. & Spencer, T. E. In vitro models of the human endometrium: evolution and application for women’s health. Biol. Reprod. 104, 282–293 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Inowa, T., Hishikawa, K., Takeuchi, T., Kitamura, T. & Fujita, T. Isolation and potential existence of side population cells in adult human kidney. Int. J. Urol. 15, 272–274 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Wang, W. et al. Single-cell transcriptomic atlas of the human endometrium during the menstrual cycle. Nat. Med. 26, 1644–1653 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lee, J. Y., Lee, M. & Lee, S. K. Role of endometrial immune cells in implantation. Clin. Exp. Reprod. Med. 38, 119–125 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Masuda, H. et al. Endometrial side population cells: potential adult stem/progenitor cells in endometrium. Biol. Reprod. 93, 84 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Maybin, J. A. & Critchley, H. O. Menstrual physiology: implications for endometrial pathology and beyond. Hum. Reprod. Update 21, 748–761 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Modi, D. N., Godbole, G., Suman, P. & Gupta, S. K. Endometrial biology during trophoblast invasion. Front Biosci 4, 1151–1171 (2012).

    Google Scholar 

  • Lyall, F. Priming and remodelling of human placental bed spiral arteries during pregnancy-a review. Placenta 26, S31–36 (2005).

    Article 
    PubMed 

    Google Scholar 

  • Dempsey, E. W. The development of capillaries in the villi of early human placentas. Am. J. Anat. 134, 221–237 (1972).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Brosens, I., Pijnenborg, R., Vercruysse, L. & Romero, R. The “Great Obstetrical Syndromes” are associated with disorders of deep placentation. Am. J. Obstet. Gynecol. 204, 193–201 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Brighton, P. J. et al. Clearance of senescent decidual cells by uterine natural killer cells in cycling human endometrium. Elife 6, e31274 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cheng, J. C., Chang, H. M. & Leung, P. C. K. TGF-beta1 inhibits human trophoblast cell invasion by upregulating connective tissue growth factor expression. Endocrinology 158, 3620–3628 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sasaki, Y. et al. Decidual and peripheral blood CD4+CD25+ regulatory T cells in early pregnancy subjects and spontaneous abortion cases. Mol. Hum. Reprod. 10, 347–353 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mei, S., Tan, J., Chen, H., Chen, Y. & Zhang, J. Changes of CD4+CD25high regulatory T cells and FOXP3 expression in unexplained recurrent spontaneous abortion patients. Fertil. Steril. 94, 2244–2247 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Nagamatsu, T. & Schust, D. J. The contribution of macrophages to normal and pathological pregnancies. Am. J. Reprod. Immunol. 63, 460–471 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Krussel, J. S., Bielfeld, P., Polan, M. L. & Simon, C. Regulation of embryonic implantation. Eur. J. Obstet. Gynecol. Reprod. Biol. 110, S2–9 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Xu, P. et al. Effects of matrix proteins on the expression of matrix metalloproteinase-2, -9, and -14 and tissue inhibitors of metalloproteinases in human cytotrophoblast cells during the first trimester. Biol. Reprod. 65, 240–246 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lu, P., Takai, K., Weaver, V. M. & Werb, Z. Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb. Perspect. Biol. 3, a005058 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Seval, Y., Akkoyunlu, G., Demir, R. & Asar, M. Distribution patterns of matrix metalloproteinase (MMP)-2 and -9 and their inhibitors (TIMP-1 and TIMP-2) in the human decidua during early pregnancy. Acta Histochem. 106, 353–362 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Li, J. et al. The strength of mechanical forces determines the differentiation of alveolar epithelial cells. Dev. Cell 44, 297–312.e295 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Abbas, Y. et al. Tissue stiffness at the human maternal-fetal interface. Hum. Reprod. 34, 1999–2008 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Singh, M., Chaudhry, P. & Asselin, E. Bridging endometrial receptivity and implantation: network of hormones, cytokines, and growth factors. J. Endocrinol. 210, 5–14 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Eriksson, G. et al. Single-cell profiling of the human endometrium in polycystic ovary syndrome. Nat. Med. 31, 1925–1938 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, P. et al. Single-cell transcriptome profiling of the human endometrium of patients with intrauterine adhesions. Sci. Rep. 15, 15107 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Al-Juboori, A. A. A. et al. Proteomic analysis of stromal and epithelial cell communications in human endometrial cancer using a unique 3D co-culture model. Proteomics 19, e1800448 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Ichioka, M. et al. Dienogest, a synthetic progestin, down-regulates expression of CYP19A1 and inflammatory and neuroangiogenesis factors through progesterone receptor isoforms A and B in endometriotic cells. J. Steroid Biochem. Mol. Biol. 147, 103–110 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Turco, M. Y. et al. Long-term, hormone-responsive organoid cultures of human endometrium in a chemically defined medium. Nat. Cell Biol. 19, 568–577 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Boretto, M. et al. Development of organoids from mouse and human endometrium showing endometrial epithelium physiology and long-term expandability. Development 144, 1775–1786 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fitzgerald, H. C., Dhakal, P., Behura, S. K., Schust, D. J. & Spencer, T. E. Self-renewing endometrial epithelial organoids of the human uterus. Proc. Natl. Acad. Sci. USA 116, 23132–23142 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hennes, A. et al. Functional expression of the mechanosensitive PIEZO1 channel in primary endometrial epithelial cells and endometrial organoids. Sci. Rep. 9, 1779 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Holloway, E. M., Capeling, M. M. & Spence, J. R. Biologically inspired approaches to enhance human organoid complexity. Development 146, dev166173 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zahmatkesh, E. et al. Evolution of organoid technology: lessons learnt in co-culture systems from developmental biology. Dev. Biol. 475, 37–53 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wiwatpanit, T. et al. Scaffold-free endometrial organoids respond to excess androgens associated with polycystic ovarian syndrome. J. Clin. Endocrinol. Metab. 105, 769–780 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Cheung, V. C. et al. Pluripotent stem cell-derived endometrial stromal fibroblasts in a cyclic, hormone-responsive, coculture model of human decidua. Cell Rep. 35, 109138 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rawlings, T. M. et al. Modelling the impact of decidual senescence on embryo implantation in human endometrial assembloids. Elife 10, e69603 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Miessen, K., Einspanier, R. & Schoen, J. Establishment and characterization of a differentiated epithelial cell culture model derived from the porcine cervix uteri. BMC Vet. Res. 8, 31 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tian, J. et al. Generation of Human Endometrial Assembloids with a Luminal Epithelium using Air-Liquid Interface Culture Methods. Adv. Sci. 10, e2301868 (2023).

    Article 

    Google Scholar 

  • Ahmad, V., Yeddula, S. G. R., Telugu, B., Spencer, T. E. & Kelleher, A. M. Development of polarity-reversed endometrial epithelial organoids. Reproduction 167, e230478 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shibata, S. et al. Modeling embryo-endometrial interface recapitulating human embryo implantation. Sci. Adv. 10, eadi4819 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gellersen, B. & Brosens, J. J. Cyclic decidualization of the human endometrium in reproductive health and failure. Endocr. Rev. 35, 851–905 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Garrido-Gomez, T. et al. Defective decidualization during and after severe preeclampsia reveals a possible maternal contribution to the etiology. Proc. Natl. Acad. Sci. USA 114, E8468–e8477 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gong, X. et al. Insights into the paracrine effects of uterine natural killer cells. Mol. Med. Rep. 10, 2851–2860 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kennedy, T. G., Gillio-Meina, C. & Phang, S. H. Prostaglandins and the initiation of blastocyst implantation and decidualization. Reproduction 134, 635–643 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gellersen, B., Brosens, I. A. & Brosens, J. J. Decidualization of the human endometrium: mechanisms, functions, and clinical perspectives. Semin. Reprod. Med. 25, 445–453 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sang, Y. F., Li, Y. H., Xu, L., Li, D. J. & Du, M. R. Regulatory mechanisms of endometrial decidualization and pregnancy-related diseases. Acta Biochim. Et. Biophys. Sin. 52, 105–115 (2020).

    Article 
    CAS 

    Google Scholar 

  • Ochoa-Bernal, M. A. & Fazleabas, A. T. Physiologic events of embryo implantation and decidualization in human and non-human primates. Int. J. Mol. Sci. 21, 1973 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Michalski, S. A., Chadchan, S. B., Jungheim, E. S. & Kommagani, R. Isolation of human endometrial stromal cells for in vitro decidualization. J. Visualized Exp. (2018).

  • Tang, Z.-J., Guan, H.-Y., Wang, L. & Zhang, W. Research progress on human endometrium decidualizationin vitrocell models. Reprod. Dev. Med. 5, 119–127 (2021).

    Article 

    Google Scholar 

  • Gnecco, J. S. et al. Compartmentalized culture of perivascular stroma and endothelial cells in a microfluidic model of the human endometrium. Ann. Biomed. Eng. 45, 1758–1769 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gnecco, J. S. et al. Hemodynamic forces enhance decidualization via endothelial-derived prostaglandin E2 and prostacyclin in a microfluidic model of the human endometrium. Hum. Reprod. 34, 702–714 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ahn, J. et al. Three-dimensional microengineered vascularised endometrium-on-a-chip. Hum. Reprod. 36, 2720–2731 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vento-Tormo, R. et al. Single-cell reconstruction of the early maternal-fetal interface in humans. Nature 563, 347–353 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Diedrich, K., Fauser, B. C., Devroey, P. & Griesinger, G. The role of the endometrium and embryo in human implantation. Hum. Reprod. Update 13, 365–377 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Staun-Ram, E. & Shalev, E. Human trophoblast function during the implantation process. Reprod. Biol. Endocrinol. 3, 56 (2005).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tazuke, S. I. & Giudice, L. C. Growth factors and cytokines in endometrium, embryonic development, and maternal: embryonic interactions. Semin. Reprod. Endocrinol. 14, 231–245 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sandra, O. Hormonal control of implantation. Ann. D. Endocrino. 77, 63–66 (2016).

    Article 

    Google Scholar 

  • Reese, J., Brown, N., Paria, B. C., Morrow, J. & Dey, S. K. COX-2 compensation in the uterus of COX-1 deficient mice during the pre-implantation period. Mol. Cell Endocrinol. 150, 23–31 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Li, X. et al. Three-dimensional culture models of human endometrium for studying trophoblast-endometrium interaction during implantation. Reprod. Biol. Endocrinol. 20, 120 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • You, Y. et al. Novel 3D in vitro models to evaluate trophoblast migration and invasion. Am. J. Reprod. Immunol. 81, e13076 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Moser, G., Windsperger, K., Pollheimer, J., de Sousa Lopes, S. C. & Huppertz, B. Human trophoblast invasion: new and unexpected routes and functions. Histochem. Cell Biol. 150, 361–370 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Knöfler, M. & Pollheimer, J. IFPA Award in Placentology lecture: molecular regulation of human trophoblast invasion. Placenta 33, S55–62 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Park, J. Y. et al. A microphysiological model of human trophoblast invasion during implantation. Nat. Commun. 13, 1252 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hiraoka, T. et al. An ex vivo uterine system captures implantation, embryogenesis, and trophoblast invasion via maternal-embryonic signaling. Nat. Commun. 16, 5755 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shroff, T. et al. Studying metabolism with multi-organ chips: new tools for disease modelling, pharmacokinetics and pharmacodynamics. Open Biol. 12, 1273–1315 (2022).

    Article 

    Google Scholar 

  • Marquardt, R. M., Kim, T. H., Shin, J.-H. & Jeong, J.-W. Progesterone and estrogen signaling in the endometrium: what goes wrong in endometriosis. Int. J. Mol. Sci. 20, 3822 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Park, S. R. et al. Development of a novel dual reproductive organ on a chip: recapitulating bidirectional endocrine crosstalk between the uterine endometrium and the ovary. Biofabrication 13, 015001 (2021).

    Article 
    CAS 

    Google Scholar 

  • Xiao, S. et al. A microfluidic culture model of the human reproductive tract and 28-day menstrual cycle. Nat. Commun. 8, 14584 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Olalekan, S. A., Burdette, J. E., Getsios, S., Woodruff, T. K. & Kim, J. J. Development of a novel human recellularized endometrium that responds to a 28-day hormone treatment. Biol. Reprod. 96, 971–981 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Satyaswaroop, P. G., Bressler, R. S., de la Pena, M. M. & Gurpide, E. Isolation and culture of human endometrial glands. J. Clin. Endocrinol. Metab. 48, 639–641 (1979).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lissitzky, S., Fayet, G., Giraud, A., Verrier, B. & Torresani, J. Thyrotrophin-induced aggregation and reorganization into follicles of isolated porcine-thyroid cells. 1. Mechanism of action of thyrotrophin and metabolic properties. Eur. J. Biochem. 24, 88–99 (1971).

    CAS 
    PubMed 

    Google Scholar 

  • Zambuto, S. G., Clancy, K. B. H. & Harley, B. A. C. A gelatin hydrogel to study endometrial angiogenesis and trophoblast invasion. Interface Focus 9, 20190016 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Abbas, Y. et al. Generation of a three-dimensional collagen scaffold-based model of the human endometrium. Interface Focus 10, 20190079 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lopez-Martinez, S. et al. Bioengineered endometrial hydrogels with growth factors promote tissue regeneration and restore fertility in murine models. Acta Biomater. 135, 113–125 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Miyazaki, K. & Maruyama, T. Partial regeneration and reconstruction of the rat uterus through recellularization of a decellularized uterine matrix. Biomaterials 35, 8791–8800 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lopez-Martinez, S. et al. A natural xenogeneic endometrial extracellular matrix hydrogel toward improving current human in vitro models and future in vivo applications. Front. Bioeng. Biotechnol. 9, 639688 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jin, X. et al. ADSC-derived exosomes-coupled decellularized matrix for endometrial regeneration and fertility restoration. Mater. Today Bio 23, 100857 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ahn, J. et al. Uterus-derived decellularized extracellular matrix-mediated endometrial regeneration and fertility enhancement. Adv. Function. Mater. 33, 2214291 (2023).

    Article 
    CAS 

    Google Scholar 

  • Frances-Herrero, E. et al. Improved models of human endometrial organoids based on hydrogels from decellularized endometrium. J. Pers. Med. 11, 504 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jamaluddin, M. F. B. et al. Bovine and human endometrium-derived hydrogels support organoid culture from healthy and cancerous tissues. Proc. Natl. Acad. Sci. USA 119, e2208040119 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hernandez-Gordillo, V. et al. Fully synthetic matrices for in vitro culture of primary human intestinal enteroids and endometrial organoids. Biomaterials 254, 120125 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gnecco, J. S. et al. Organoid co-culture model of the human endometrium in a fully synthetic extracellular matrix enables the study of epithelial-stromal crosstalk. Med 4, 554–579 e559 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Iwahashi, M., Muragaki, Y., Ooshima, A., Yamoto, M. & Nakano, R. Alterations in distribution and composition of the extracellular matrix during decidualization of the human endometrium. J. Reprod. Fertil. 108, 147–155 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ji, W. et al. 3D Bioprinting a human iPSC-derived MSC-loaded scaffold for repair of the uterine endometrium. Acta Biomater. 116, 268–284 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wen, J. et al. 3D-printed hydrogel scaffold-loaded granulocyte colony-stimulating factor sustained-release microspheres and their effect on endometrial regeneration. Biomater. Sci. 10, 3346–3358 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Nie, N. et al. 3D bio-printed endometrial construct restores the full-thickness morphology and fertility of injured uterine endometrium. Acta Biomater. 157, 187–199 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Catane, L. J., Asher, E., Reich, R. & Tavor Re’em, T. Bioprinted hormone-responsive bilayer model of human endometrium for embryo implantation studies. ACS Biomater. Sci. Eng. 11, 2922–2934 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Burney, R. O. & Giudice, L. C. Pathogenesis and pathophysiology of endometriosis. Fertil. Steril. 98, 511–519 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Esfandiari, N., Nazemian, Z. & Casper, R. F. Three-dimensional culture of endometrial cells: an in vitro model of endometriosis. Am. J. Reprod. Immunol. 60, 283–289 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Shimizu, Y. et al. Dienogest, a synthetic progestin, inhibits prostaglandin E2 production and aromatase expression by human endometrial epithelial cells in a spheroid culture system. Steroids 76, 60–67 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Boretto, M. et al. Patient-derived organoids from endometrial disease capture clinical heterogeneity and are amenable to drug screening. Nat. Cell Biol. 21, 1041–1051 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chen, Z. et al. Co-cultured endometrial stromal cells and peritoneal mesothelial cells for an in vitro model of endometriosis. Integr. Biol. 4, 1090–1095 (2012).

    Article 
    CAS 

    Google Scholar 

  • Yu, D., Wong, Y.-M., Cheong, Y., Xia, E. & Li, T.-C. Asherman syndrome—one century later. Fertil. Steril. 89, 759–779 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Deans, R. & Abbott, J. Review of Intrauterine Adhesions. J. Minim. Invasive Gynecol. 17, 555–569 (2010).

    Article 
    PubMed 

    Google Scholar 

  • Jiang, X. et al. Endometrial membrane organoids from human embryonic stem cell combined with the 3D Matrigel for endometrium regeneration in asherman syndrome. Bioact. Mater. 6, 3935–3946 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Murphy, A. R., Campo, H. & Kim, J. J. Strategies for modelling endometrial diseases. Nat. Rev. Endocrinol. 18, 727–743 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Alawadhi, F., Du, H., Cakmak, H. & Taylor, H. S. Bone marrow-derived stem cell (BMDSC) transplantation improves fertility in a murine model of Asherman’s syndrome. PLoS ONE 9, e96662 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ding, L. et al. Transplantation of bone marrow mesenchymal stem cells on collagen scaffolds for the functional regeneration of injured rat uterus. Biomaterials 35, 4888–4900 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Liu, F. et al. Hyaluronic acid hydrogel integrated with mesenchymal stem cell-secretome to treat endometrial injury in a rat model of Asherman’s syndrome. Adv. Health. Mater. 8, e1900411 (2019).

    Article 

    Google Scholar 

  • Tan, J. et al. Autologous menstrual blood-derived stromal cells transplantation for severe Asherman’s syndrome. Hum. Reprod. 31, 2723–2729 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Domnina, A. et al. Human mesenchymal stem cells in spheroids improve fertility in model animals with damaged endometrium. Stem Cell Res. Ther 9, 50 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhu, X. et al. Human endometrial perivascular stem cells exhibit a limited potential to regenerate endometrium after xenotransplantation. Hum. Reprod. 36, 145–159 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Cheon, D.-J. & Orsulic, S. Mouse models of cancer. Annu. Rev. Pathol. Mechanisms Dis. 6, 95–119 (2011).

    Article 
    CAS 

    Google Scholar 

  • Larue, L. & Beermann, F. Cutaneous melanoma in genetically modified animals. Pigment Cell Res 20, 485–497 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Herschkowitz, J. I. et al. Identification of conserved gene expression features between murine mammary carcinoma models and human breast tumors. Genome Biol. 8, R76 (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chitcholtan, K., Sykes, P. H. & Evans, J. J. The resistance of intracellular mediators to doxorubicin and cisplatin are distinct in 3D and 2D endometrial cancer. J. Transl. Med. 10, 38 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Maru, Y., Tanaka, N., Itami, M. & Hippo, Y. Efficient use of patient-derived organoids as a preclinical model for gynecologic tumors. Gynecol. Oncol. 154, 189–198 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chen, J. Y. et al. An organoid-based drug screening identified a menin-MLL inhibitor for endometrial cancer through regulating the HIF pathway. Cancer Gene Ther. 28, 112–125 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bi, J. L. et al. Successful patient-derived organoid culture of gynecologic cancers for disease modeling and drug sensitivity testing. Cancers 13, 2901 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McMillin, D. W., Negri, J. M. & Mitsiades, C. S. The role of tumour-stromal interactions in modifying drug response: challenges and opportunities. Nat. Rev. Drug Discov. 12, 217–228 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Collins, A. et al. Patient-derived explants, xenografts and organoids: 3-dimensional patient-relevant pre-clinical models in endometrial cancer. Gynecol. Oncol. 156, 251–259 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Weiss, G., Goldsmith, L. T., Taylor, R. N., Bellet, D. & Taylor, H. S. Inflammation in reproductive disorders. Reprod. Sci. 16, 216–229 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kitaya, K. & Yasuo, T. Commonalities and disparities between endometriosis and chronic endometritis: therapeutic potential of novel antibiotic treatment strategy against ectopic endometrium. Int. J. Mol. Sci. 24, 2059 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pirtea, P., Cicinelli, E., De Nola, R., de Ziegler, D. & Ayoubi, J. M. Endometrial causes of recurrent pregnancy losses: endometriosis, adenomyosis, and chronic endometritis. Fertil. Steril. 115, 546–560 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Vitagliano, A. et al. Effects of chronic endometritis therapy on in vitro fertilization outcome in women with repeated implantation failure: a systematic review and meta-analysis. Fertil. Steril. 110, 103–112.e1 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Johnston-MacAnanny, E. B. et al. Chronic endometritis is a frequent finding in women with recurrent implantation failure after in vitro fertilization. Fertil. Sterility 93, 437–441 (2010).

    Article 

    Google Scholar 

  • Bishop, R. C., Boretto, M., Rutkowski, M. R., Vankelecom, H. & Derre, I. Murine endometrial organoids to model chlamydia infection. Front. Cell Infect. Microbiol. 10, 416 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Semmes, E. C. & Coyne, C. B. Innate immune defenses at the maternal-fetal interface. Curr. Opin. Immunol. 74, 60–67 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yang, L. et al. Innate immune signaling in trophoblast and decidua organoids defines differential antiviral defenses at the maternal-fetal interface. eLife 11, e79794 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, T. et al. Endometrial thickness as a predictor of the reproductive outcomes in fresh and frozen embryo transfer cycles: a retrospective cohort study of 1512 IVF cycles with morphologically good-quality blastocyst. Medicine 97, e9689 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Maleki-Hajiagha, A. et al. Intrauterine infusion of autologous platelet-rich plasma in women undergoing assisted reproduction: a systematic review and meta-analysis. J. Reprod. Immunol. 137, 103078 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Yokomizo, R. et al. Endometrial regeneration with endometrial epithelium: homologous orchestration with endometrial stroma as a feeder. Stem Cell Res. Ther. 12, 130 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhu, Y. J. et al. Antioxidant nanozyme microneedles with stem cell loading for in situ endometrial repair. Chem. Eng. J. 449, 137786 (2022).

    Article 
    CAS 

    Google Scholar 

  • Lei, L. J. et al. Angiogenic microspheres for the treatment of a thin endometrium. Acs Biomater. Sci. Eng. 7, 4914–4920 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Xin, L. et al. A collagen scaffold loaded with human umbilical cord-derived mesenchymal stem cells facilitates endometrial regeneration and restores fertility. Acta Biomater. 92, 160–171 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wei, S. et al. An endometrial biomimetic extracellular matrix (ECM) for enhanced endometrial regeneration using hyaluronic acid hydrogel containing recombinant human type III collagen. Int. J. Biol. Macromol. 268, 131723 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Liu, H. et al. Advances in hydrogels in organoids and organs-on-a-chip. Adv. Mater. 31, e1902042 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Mitrofanova, O. et al. Bioengineered human colon organoids with in vivo-like cellular complexity and function. Cell Stem Cell 31(1175–1186), e1177 (2024).

    Google Scholar 

  • Nikolaev, M. et al. Homeostatic mini-intestines through scaffold-guided organoid morphogenesis. Nature 585, 574–578 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Juárez-Barber, E. et al. Establishment of adenomyosis organoids as a preclinical model to study infertility. J. Personal. Med. 12, 219 (2022).

    Article 

    Google Scholar 

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *