Thompson, R. E., Premanandan, C., Pukazhenthi, B. S. & Whitlock, B. K. A review of in vivo and in vitro studies of the mare endometrium. Anim. Reprod. Sci. 222, 106605 (2020).
Google Scholar
Ramathal, C. Y., Bagchi, I. C., Taylor, R. N. & Bagchi, M. K. Endometrial decidualization: of mice and men. Semin. Reprod. Med. 28, 017–026 (2010).
Google Scholar
Nayak, N. R. & Brenner, R. M. Vascular proliferation and vascular endothelial growth factor expression in the rhesus macaque endometrium. J. Clin. Endocrinol. Metab. 87, 1845–1855 (2002).
Google Scholar
Giudice, L. C. & Kao, L. C. Endometriosis. LANCET 364, 1789–1799 (2004).
Google Scholar
Su, R. W. & Fazleabas, A. T. Implantation and establishment of pregnancy in human and nonhuman primates. Adv. Anat. Embryol. Cell Biol. 216, 189–213 (2015).
Google Scholar
Dilworth, M. R. & Sibley, C. P. Review: transport across the placenta of mice and women. Placenta 34, S34–S39 (2013).
Google Scholar
Carter, A. M., Enders, A. C. & Pijnenborg, R. The role of invasive trophoblast in implantation and placentation of primates. Philos. Trans. R. Soc. B-Biol. Sci. 370, 20140070 (2015).
Google Scholar
Evans, J. et al. Fertile ground: human endometrial programming and lessons in health and disease. Nat. Rev. Endocrinol. 12, 654–667 (2016).
Google Scholar
Conings, S., Amant, F., Annaert, P. & Van Calsteren, K. Integration and validation of the ex vivo human placenta perfusion model. J. Pharmacol. Toxicol. Methods 88, 25–31 (2017).
Google Scholar
Bhatia, S. N. & Ingber, D. E. Microfluidic organs-on-chips. Nat. Biotechnol. 32, 760–772 (2014).
Google Scholar
Esch, E. W., Bahinski, A. & Huh, D. Organs-on-chips at the frontiers of drug discovery. Nat. Rev. Drug Discov. 14, 248–260 (2015).
Google Scholar
Huh, D., Torisawa, Y. S., Hamilton, G. A., Kim, H. J. & Ingber, D. E. Microengineered physiological biomimicry: organs-on-chips. Lab Chip 12, 2156–2164 (2012).
Google Scholar
Campo, H. et al. A new tissue-agnostic microfluidic device to model physiology and disease: the lattice platform. Lab Chip 23, 4821–4833 (2023).
Google Scholar
Huh, D. et al. Reconstituting organ-level lung functions on a chip. Science 328, 1662–1668 (2010).
Google Scholar
Kim, H. J., Huh, D., Hamilton, G. & Ingber, D. E. Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab Chip 12, 2165–2174 (2012).
Google Scholar
Deng, J. et al. Engineered liver-on-a-chip platform to mimic liver functions and its biomedical applications: a review. Micromachines 10, 676 (2019).
Google Scholar
Clevers, H. Modeling development and disease with organoids. Cell 165, 1586–1597 (2016).
Google Scholar
Fatehullah, A., Tan, S. H. & Barker, N. Organoids as an in vitro model of human development and disease. Nat. Cell Biol. 18, 246–254 (2016).
Google Scholar
Lancaster, M. A. & Knoblich, J. A. Organogenesis in a dish: modeling development and disease using organoid technologies. Science 345, 1247125 (2014).
Google Scholar
Fitzgerald, H. C., Schust, D. J. & Spencer, T. E. In vitro models of the human endometrium: evolution and application for women’s health. Biol. Reprod. 104, 282–293 (2021).
Google Scholar
Inowa, T., Hishikawa, K., Takeuchi, T., Kitamura, T. & Fujita, T. Isolation and potential existence of side population cells in adult human kidney. Int. J. Urol. 15, 272–274 (2008).
Google Scholar
Wang, W. et al. Single-cell transcriptomic atlas of the human endometrium during the menstrual cycle. Nat. Med. 26, 1644–1653 (2020).
Google Scholar
Lee, J. Y., Lee, M. & Lee, S. K. Role of endometrial immune cells in implantation. Clin. Exp. Reprod. Med. 38, 119–125 (2011).
Google Scholar
Masuda, H. et al. Endometrial side population cells: potential adult stem/progenitor cells in endometrium. Biol. Reprod. 93, 84 (2015).
Google Scholar
Maybin, J. A. & Critchley, H. O. Menstrual physiology: implications for endometrial pathology and beyond. Hum. Reprod. Update 21, 748–761 (2015).
Google Scholar
Modi, D. N., Godbole, G., Suman, P. & Gupta, S. K. Endometrial biology during trophoblast invasion. Front Biosci 4, 1151–1171 (2012).
Lyall, F. Priming and remodelling of human placental bed spiral arteries during pregnancy-a review. Placenta 26, S31–36 (2005).
Google Scholar
Dempsey, E. W. The development of capillaries in the villi of early human placentas. Am. J. Anat. 134, 221–237 (1972).
Google Scholar
Brosens, I., Pijnenborg, R., Vercruysse, L. & Romero, R. The “Great Obstetrical Syndromes” are associated with disorders of deep placentation. Am. J. Obstet. Gynecol. 204, 193–201 (2011).
Google Scholar
Brighton, P. J. et al. Clearance of senescent decidual cells by uterine natural killer cells in cycling human endometrium. Elife 6, e31274 (2017).
Google Scholar
Cheng, J. C., Chang, H. M. & Leung, P. C. K. TGF-beta1 inhibits human trophoblast cell invasion by upregulating connective tissue growth factor expression. Endocrinology 158, 3620–3628 (2017).
Google Scholar
Sasaki, Y. et al. Decidual and peripheral blood CD4+CD25+ regulatory T cells in early pregnancy subjects and spontaneous abortion cases. Mol. Hum. Reprod. 10, 347–353 (2004).
Google Scholar
Mei, S., Tan, J., Chen, H., Chen, Y. & Zhang, J. Changes of CD4+CD25high regulatory T cells and FOXP3 expression in unexplained recurrent spontaneous abortion patients. Fertil. Steril. 94, 2244–2247 (2010).
Google Scholar
Nagamatsu, T. & Schust, D. J. The contribution of macrophages to normal and pathological pregnancies. Am. J. Reprod. Immunol. 63, 460–471 (2010).
Google Scholar
Krussel, J. S., Bielfeld, P., Polan, M. L. & Simon, C. Regulation of embryonic implantation. Eur. J. Obstet. Gynecol. Reprod. Biol. 110, S2–9 (2003).
Google Scholar
Xu, P. et al. Effects of matrix proteins on the expression of matrix metalloproteinase-2, -9, and -14 and tissue inhibitors of metalloproteinases in human cytotrophoblast cells during the first trimester. Biol. Reprod. 65, 240–246 (2001).
Google Scholar
Lu, P., Takai, K., Weaver, V. M. & Werb, Z. Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb. Perspect. Biol. 3, a005058 (2011).
Google Scholar
Seval, Y., Akkoyunlu, G., Demir, R. & Asar, M. Distribution patterns of matrix metalloproteinase (MMP)-2 and -9 and their inhibitors (TIMP-1 and TIMP-2) in the human decidua during early pregnancy. Acta Histochem. 106, 353–362 (2004).
Google Scholar
Li, J. et al. The strength of mechanical forces determines the differentiation of alveolar epithelial cells. Dev. Cell 44, 297–312.e295 (2018).
Google Scholar
Abbas, Y. et al. Tissue stiffness at the human maternal-fetal interface. Hum. Reprod. 34, 1999–2008 (2019).
Google Scholar
Singh, M., Chaudhry, P. & Asselin, E. Bridging endometrial receptivity and implantation: network of hormones, cytokines, and growth factors. J. Endocrinol. 210, 5–14 (2011).
Google Scholar
Eriksson, G. et al. Single-cell profiling of the human endometrium in polycystic ovary syndrome. Nat. Med. 31, 1925–1938 (2025).
Google Scholar
Li, P. et al. Single-cell transcriptome profiling of the human endometrium of patients with intrauterine adhesions. Sci. Rep. 15, 15107 (2025).
Google Scholar
Al-Juboori, A. A. A. et al. Proteomic analysis of stromal and epithelial cell communications in human endometrial cancer using a unique 3D co-culture model. Proteomics 19, e1800448 (2019).
Google Scholar
Ichioka, M. et al. Dienogest, a synthetic progestin, down-regulates expression of CYP19A1 and inflammatory and neuroangiogenesis factors through progesterone receptor isoforms A and B in endometriotic cells. J. Steroid Biochem. Mol. Biol. 147, 103–110 (2015).
Google Scholar
Turco, M. Y. et al. Long-term, hormone-responsive organoid cultures of human endometrium in a chemically defined medium. Nat. Cell Biol. 19, 568–577 (2017).
Google Scholar
Boretto, M. et al. Development of organoids from mouse and human endometrium showing endometrial epithelium physiology and long-term expandability. Development 144, 1775–1786 (2017).
Google Scholar
Fitzgerald, H. C., Dhakal, P., Behura, S. K., Schust, D. J. & Spencer, T. E. Self-renewing endometrial epithelial organoids of the human uterus. Proc. Natl. Acad. Sci. USA 116, 23132–23142 (2019).
Google Scholar
Hennes, A. et al. Functional expression of the mechanosensitive PIEZO1 channel in primary endometrial epithelial cells and endometrial organoids. Sci. Rep. 9, 1779 (2019).
Google Scholar
Holloway, E. M., Capeling, M. M. & Spence, J. R. Biologically inspired approaches to enhance human organoid complexity. Development 146, dev166173 (2019).
Google Scholar
Zahmatkesh, E. et al. Evolution of organoid technology: lessons learnt in co-culture systems from developmental biology. Dev. Biol. 475, 37–53 (2021).
Google Scholar
Wiwatpanit, T. et al. Scaffold-free endometrial organoids respond to excess androgens associated with polycystic ovarian syndrome. J. Clin. Endocrinol. Metab. 105, 769–780 (2020).
Google Scholar
Cheung, V. C. et al. Pluripotent stem cell-derived endometrial stromal fibroblasts in a cyclic, hormone-responsive, coculture model of human decidua. Cell Rep. 35, 109138 (2021).
Google Scholar
Rawlings, T. M. et al. Modelling the impact of decidual senescence on embryo implantation in human endometrial assembloids. Elife 10, e69603 (2021).
Google Scholar
Miessen, K., Einspanier, R. & Schoen, J. Establishment and characterization of a differentiated epithelial cell culture model derived from the porcine cervix uteri. BMC Vet. Res. 8, 31 (2012).
Google Scholar
Tian, J. et al. Generation of Human Endometrial Assembloids with a Luminal Epithelium using Air-Liquid Interface Culture Methods. Adv. Sci. 10, e2301868 (2023).
Google Scholar
Ahmad, V., Yeddula, S. G. R., Telugu, B., Spencer, T. E. & Kelleher, A. M. Development of polarity-reversed endometrial epithelial organoids. Reproduction 167, e230478 (2024).
Google Scholar
Shibata, S. et al. Modeling embryo-endometrial interface recapitulating human embryo implantation. Sci. Adv. 10, eadi4819 (2024).
Google Scholar
Gellersen, B. & Brosens, J. J. Cyclic decidualization of the human endometrium in reproductive health and failure. Endocr. Rev. 35, 851–905 (2014).
Google Scholar
Garrido-Gomez, T. et al. Defective decidualization during and after severe preeclampsia reveals a possible maternal contribution to the etiology. Proc. Natl. Acad. Sci. USA 114, E8468–e8477 (2017).
Google Scholar
Gong, X. et al. Insights into the paracrine effects of uterine natural killer cells. Mol. Med. Rep. 10, 2851–2860 (2014).
Google Scholar
Kennedy, T. G., Gillio-Meina, C. & Phang, S. H. Prostaglandins and the initiation of blastocyst implantation and decidualization. Reproduction 134, 635–643 (2007).
Google Scholar
Gellersen, B., Brosens, I. A. & Brosens, J. J. Decidualization of the human endometrium: mechanisms, functions, and clinical perspectives. Semin. Reprod. Med. 25, 445–453 (2007).
Google Scholar
Sang, Y. F., Li, Y. H., Xu, L., Li, D. J. & Du, M. R. Regulatory mechanisms of endometrial decidualization and pregnancy-related diseases. Acta Biochim. Et. Biophys. Sin. 52, 105–115 (2020).
Google Scholar
Ochoa-Bernal, M. A. & Fazleabas, A. T. Physiologic events of embryo implantation and decidualization in human and non-human primates. Int. J. Mol. Sci. 21, 1973 (2020).
Google Scholar
Michalski, S. A., Chadchan, S. B., Jungheim, E. S. & Kommagani, R. Isolation of human endometrial stromal cells for in vitro decidualization. J. Visualized Exp. (2018).
Tang, Z.-J., Guan, H.-Y., Wang, L. & Zhang, W. Research progress on human endometrium decidualizationin vitrocell models. Reprod. Dev. Med. 5, 119–127 (2021).
Google Scholar
Gnecco, J. S. et al. Compartmentalized culture of perivascular stroma and endothelial cells in a microfluidic model of the human endometrium. Ann. Biomed. Eng. 45, 1758–1769 (2017).
Google Scholar
Gnecco, J. S. et al. Hemodynamic forces enhance decidualization via endothelial-derived prostaglandin E2 and prostacyclin in a microfluidic model of the human endometrium. Hum. Reprod. 34, 702–714 (2019).
Google Scholar
Ahn, J. et al. Three-dimensional microengineered vascularised endometrium-on-a-chip. Hum. Reprod. 36, 2720–2731 (2021).
Google Scholar
Vento-Tormo, R. et al. Single-cell reconstruction of the early maternal-fetal interface in humans. Nature 563, 347–353 (2018).
Google Scholar
Diedrich, K., Fauser, B. C., Devroey, P. & Griesinger, G. The role of the endometrium and embryo in human implantation. Hum. Reprod. Update 13, 365–377 (2007).
Google Scholar
Staun-Ram, E. & Shalev, E. Human trophoblast function during the implantation process. Reprod. Biol. Endocrinol. 3, 56 (2005).
Google Scholar
Tazuke, S. I. & Giudice, L. C. Growth factors and cytokines in endometrium, embryonic development, and maternal: embryonic interactions. Semin. Reprod. Endocrinol. 14, 231–245 (1996).
Google Scholar
Sandra, O. Hormonal control of implantation. Ann. D. Endocrino. 77, 63–66 (2016).
Google Scholar
Reese, J., Brown, N., Paria, B. C., Morrow, J. & Dey, S. K. COX-2 compensation in the uterus of COX-1 deficient mice during the pre-implantation period. Mol. Cell Endocrinol. 150, 23–31 (1999).
Google Scholar
Li, X. et al. Three-dimensional culture models of human endometrium for studying trophoblast-endometrium interaction during implantation. Reprod. Biol. Endocrinol. 20, 120 (2022).
Google Scholar
You, Y. et al. Novel 3D in vitro models to evaluate trophoblast migration and invasion. Am. J. Reprod. Immunol. 81, e13076 (2019).
Google Scholar
Moser, G., Windsperger, K., Pollheimer, J., de Sousa Lopes, S. C. & Huppertz, B. Human trophoblast invasion: new and unexpected routes and functions. Histochem. Cell Biol. 150, 361–370 (2018).
Google Scholar
Knöfler, M. & Pollheimer, J. IFPA Award in Placentology lecture: molecular regulation of human trophoblast invasion. Placenta 33, S55–62 (2012).
Google Scholar
Park, J. Y. et al. A microphysiological model of human trophoblast invasion during implantation. Nat. Commun. 13, 1252 (2022).
Google Scholar
Hiraoka, T. et al. An ex vivo uterine system captures implantation, embryogenesis, and trophoblast invasion via maternal-embryonic signaling. Nat. Commun. 16, 5755 (2025).
Google Scholar
Shroff, T. et al. Studying metabolism with multi-organ chips: new tools for disease modelling, pharmacokinetics and pharmacodynamics. Open Biol. 12, 1273–1315 (2022).
Google Scholar
Marquardt, R. M., Kim, T. H., Shin, J.-H. & Jeong, J.-W. Progesterone and estrogen signaling in the endometrium: what goes wrong in endometriosis. Int. J. Mol. Sci. 20, 3822 (2019).
Google Scholar
Park, S. R. et al. Development of a novel dual reproductive organ on a chip: recapitulating bidirectional endocrine crosstalk between the uterine endometrium and the ovary. Biofabrication 13, 015001 (2021).
Google Scholar
Xiao, S. et al. A microfluidic culture model of the human reproductive tract and 28-day menstrual cycle. Nat. Commun. 8, 14584 (2017).
Google Scholar
Olalekan, S. A., Burdette, J. E., Getsios, S., Woodruff, T. K. & Kim, J. J. Development of a novel human recellularized endometrium that responds to a 28-day hormone treatment. Biol. Reprod. 96, 971–981 (2017).
Google Scholar
Satyaswaroop, P. G., Bressler, R. S., de la Pena, M. M. & Gurpide, E. Isolation and culture of human endometrial glands. J. Clin. Endocrinol. Metab. 48, 639–641 (1979).
Google Scholar
Lissitzky, S., Fayet, G., Giraud, A., Verrier, B. & Torresani, J. Thyrotrophin-induced aggregation and reorganization into follicles of isolated porcine-thyroid cells. 1. Mechanism of action of thyrotrophin and metabolic properties. Eur. J. Biochem. 24, 88–99 (1971).
Google Scholar
Zambuto, S. G., Clancy, K. B. H. & Harley, B. A. C. A gelatin hydrogel to study endometrial angiogenesis and trophoblast invasion. Interface Focus 9, 20190016 (2019).
Google Scholar
Abbas, Y. et al. Generation of a three-dimensional collagen scaffold-based model of the human endometrium. Interface Focus 10, 20190079 (2020).
Google Scholar
Lopez-Martinez, S. et al. Bioengineered endometrial hydrogels with growth factors promote tissue regeneration and restore fertility in murine models. Acta Biomater. 135, 113–125 (2021).
Google Scholar
Miyazaki, K. & Maruyama, T. Partial regeneration and reconstruction of the rat uterus through recellularization of a decellularized uterine matrix. Biomaterials 35, 8791–8800 (2014).
Google Scholar
Lopez-Martinez, S. et al. A natural xenogeneic endometrial extracellular matrix hydrogel toward improving current human in vitro models and future in vivo applications. Front. Bioeng. Biotechnol. 9, 639688 (2021).
Google Scholar
Jin, X. et al. ADSC-derived exosomes-coupled decellularized matrix for endometrial regeneration and fertility restoration. Mater. Today Bio 23, 100857 (2023).
Google Scholar
Ahn, J. et al. Uterus-derived decellularized extracellular matrix-mediated endometrial regeneration and fertility enhancement. Adv. Function. Mater. 33, 2214291 (2023).
Google Scholar
Frances-Herrero, E. et al. Improved models of human endometrial organoids based on hydrogels from decellularized endometrium. J. Pers. Med. 11, 504 (2021).
Google Scholar
Jamaluddin, M. F. B. et al. Bovine and human endometrium-derived hydrogels support organoid culture from healthy and cancerous tissues. Proc. Natl. Acad. Sci. USA 119, e2208040119 (2022).
Google Scholar
Hernandez-Gordillo, V. et al. Fully synthetic matrices for in vitro culture of primary human intestinal enteroids and endometrial organoids. Biomaterials 254, 120125 (2020).
Google Scholar
Gnecco, J. S. et al. Organoid co-culture model of the human endometrium in a fully synthetic extracellular matrix enables the study of epithelial-stromal crosstalk. Med 4, 554–579 e559 (2023).
Google Scholar
Iwahashi, M., Muragaki, Y., Ooshima, A., Yamoto, M. & Nakano, R. Alterations in distribution and composition of the extracellular matrix during decidualization of the human endometrium. J. Reprod. Fertil. 108, 147–155 (1996).
Google Scholar
Ji, W. et al. 3D Bioprinting a human iPSC-derived MSC-loaded scaffold for repair of the uterine endometrium. Acta Biomater. 116, 268–284 (2020).
Google Scholar
Wen, J. et al. 3D-printed hydrogel scaffold-loaded granulocyte colony-stimulating factor sustained-release microspheres and their effect on endometrial regeneration. Biomater. Sci. 10, 3346–3358 (2022).
Google Scholar
Nie, N. et al. 3D bio-printed endometrial construct restores the full-thickness morphology and fertility of injured uterine endometrium. Acta Biomater. 157, 187–199 (2023).
Google Scholar
Catane, L. J., Asher, E., Reich, R. & Tavor Re’em, T. Bioprinted hormone-responsive bilayer model of human endometrium for embryo implantation studies. ACS Biomater. Sci. Eng. 11, 2922–2934 (2025).
Google Scholar
Burney, R. O. & Giudice, L. C. Pathogenesis and pathophysiology of endometriosis. Fertil. Steril. 98, 511–519 (2012).
Google Scholar
Esfandiari, N., Nazemian, Z. & Casper, R. F. Three-dimensional culture of endometrial cells: an in vitro model of endometriosis. Am. J. Reprod. Immunol. 60, 283–289 (2008).
Google Scholar
Shimizu, Y. et al. Dienogest, a synthetic progestin, inhibits prostaglandin E2 production and aromatase expression by human endometrial epithelial cells in a spheroid culture system. Steroids 76, 60–67 (2011).
Google Scholar
Boretto, M. et al. Patient-derived organoids from endometrial disease capture clinical heterogeneity and are amenable to drug screening. Nat. Cell Biol. 21, 1041–1051 (2019).
Google Scholar
Chen, Z. et al. Co-cultured endometrial stromal cells and peritoneal mesothelial cells for an in vitro model of endometriosis. Integr. Biol. 4, 1090–1095 (2012).
Google Scholar
Yu, D., Wong, Y.-M., Cheong, Y., Xia, E. & Li, T.-C. Asherman syndrome—one century later. Fertil. Steril. 89, 759–779 (2008).
Google Scholar
Deans, R. & Abbott, J. Review of Intrauterine Adhesions. J. Minim. Invasive Gynecol. 17, 555–569 (2010).
Google Scholar
Jiang, X. et al. Endometrial membrane organoids from human embryonic stem cell combined with the 3D Matrigel for endometrium regeneration in asherman syndrome. Bioact. Mater. 6, 3935–3946 (2021).
Google Scholar
Murphy, A. R., Campo, H. & Kim, J. J. Strategies for modelling endometrial diseases. Nat. Rev. Endocrinol. 18, 727–743 (2022).
Google Scholar
Alawadhi, F., Du, H., Cakmak, H. & Taylor, H. S. Bone marrow-derived stem cell (BMDSC) transplantation improves fertility in a murine model of Asherman’s syndrome. PLoS ONE 9, e96662 (2014).
Google Scholar
Ding, L. et al. Transplantation of bone marrow mesenchymal stem cells on collagen scaffolds for the functional regeneration of injured rat uterus. Biomaterials 35, 4888–4900 (2014).
Google Scholar
Liu, F. et al. Hyaluronic acid hydrogel integrated with mesenchymal stem cell-secretome to treat endometrial injury in a rat model of Asherman’s syndrome. Adv. Health. Mater. 8, e1900411 (2019).
Google Scholar
Tan, J. et al. Autologous menstrual blood-derived stromal cells transplantation for severe Asherman’s syndrome. Hum. Reprod. 31, 2723–2729 (2016).
Google Scholar
Domnina, A. et al. Human mesenchymal stem cells in spheroids improve fertility in model animals with damaged endometrium. Stem Cell Res. Ther 9, 50 (2018).
Google Scholar
Zhu, X. et al. Human endometrial perivascular stem cells exhibit a limited potential to regenerate endometrium after xenotransplantation. Hum. Reprod. 36, 145–159 (2021).
Google Scholar
Cheon, D.-J. & Orsulic, S. Mouse models of cancer. Annu. Rev. Pathol. Mechanisms Dis. 6, 95–119 (2011).
Google Scholar
Larue, L. & Beermann, F. Cutaneous melanoma in genetically modified animals. Pigment Cell Res 20, 485–497 (2007).
Google Scholar
Herschkowitz, J. I. et al. Identification of conserved gene expression features between murine mammary carcinoma models and human breast tumors. Genome Biol. 8, R76 (2007).
Google Scholar
Chitcholtan, K., Sykes, P. H. & Evans, J. J. The resistance of intracellular mediators to doxorubicin and cisplatin are distinct in 3D and 2D endometrial cancer. J. Transl. Med. 10, 38 (2012).
Google Scholar
Maru, Y., Tanaka, N., Itami, M. & Hippo, Y. Efficient use of patient-derived organoids as a preclinical model for gynecologic tumors. Gynecol. Oncol. 154, 189–198 (2019).
Google Scholar
Chen, J. Y. et al. An organoid-based drug screening identified a menin-MLL inhibitor for endometrial cancer through regulating the HIF pathway. Cancer Gene Ther. 28, 112–125 (2021).
Google Scholar
Bi, J. L. et al. Successful patient-derived organoid culture of gynecologic cancers for disease modeling and drug sensitivity testing. Cancers 13, 2901 (2021).
Google Scholar
McMillin, D. W., Negri, J. M. & Mitsiades, C. S. The role of tumour-stromal interactions in modifying drug response: challenges and opportunities. Nat. Rev. Drug Discov. 12, 217–228 (2013).
Google Scholar
Collins, A. et al. Patient-derived explants, xenografts and organoids: 3-dimensional patient-relevant pre-clinical models in endometrial cancer. Gynecol. Oncol. 156, 251–259 (2020).
Google Scholar
Weiss, G., Goldsmith, L. T., Taylor, R. N., Bellet, D. & Taylor, H. S. Inflammation in reproductive disorders. Reprod. Sci. 16, 216–229 (2009).
Google Scholar
Kitaya, K. & Yasuo, T. Commonalities and disparities between endometriosis and chronic endometritis: therapeutic potential of novel antibiotic treatment strategy against ectopic endometrium. Int. J. Mol. Sci. 24, 2059 (2023).
Google Scholar
Pirtea, P., Cicinelli, E., De Nola, R., de Ziegler, D. & Ayoubi, J. M. Endometrial causes of recurrent pregnancy losses: endometriosis, adenomyosis, and chronic endometritis. Fertil. Steril. 115, 546–560 (2021).
Google Scholar
Vitagliano, A. et al. Effects of chronic endometritis therapy on in vitro fertilization outcome in women with repeated implantation failure: a systematic review and meta-analysis. Fertil. Steril. 110, 103–112.e1 (2018).
Google Scholar
Johnston-MacAnanny, E. B. et al. Chronic endometritis is a frequent finding in women with recurrent implantation failure after in vitro fertilization. Fertil. Sterility 93, 437–441 (2010).
Google Scholar
Bishop, R. C., Boretto, M., Rutkowski, M. R., Vankelecom, H. & Derre, I. Murine endometrial organoids to model chlamydia infection. Front. Cell Infect. Microbiol. 10, 416 (2020).
Google Scholar
Semmes, E. C. & Coyne, C. B. Innate immune defenses at the maternal-fetal interface. Curr. Opin. Immunol. 74, 60–67 (2022).
Google Scholar
Yang, L. et al. Innate immune signaling in trophoblast and decidua organoids defines differential antiviral defenses at the maternal-fetal interface. eLife 11, e79794 (2022).
Google Scholar
Zhang, T. et al. Endometrial thickness as a predictor of the reproductive outcomes in fresh and frozen embryo transfer cycles: a retrospective cohort study of 1512 IVF cycles with morphologically good-quality blastocyst. Medicine 97, e9689 (2018).
Google Scholar
Maleki-Hajiagha, A. et al. Intrauterine infusion of autologous platelet-rich plasma in women undergoing assisted reproduction: a systematic review and meta-analysis. J. Reprod. Immunol. 137, 103078 (2020).
Google Scholar
Yokomizo, R. et al. Endometrial regeneration with endometrial epithelium: homologous orchestration with endometrial stroma as a feeder. Stem Cell Res. Ther. 12, 130 (2021).
Google Scholar
Zhu, Y. J. et al. Antioxidant nanozyme microneedles with stem cell loading for in situ endometrial repair. Chem. Eng. J. 449, 137786 (2022).
Google Scholar
Lei, L. J. et al. Angiogenic microspheres for the treatment of a thin endometrium. Acs Biomater. Sci. Eng. 7, 4914–4920 (2021).
Google Scholar
Xin, L. et al. A collagen scaffold loaded with human umbilical cord-derived mesenchymal stem cells facilitates endometrial regeneration and restores fertility. Acta Biomater. 92, 160–171 (2019).
Google Scholar
Wei, S. et al. An endometrial biomimetic extracellular matrix (ECM) for enhanced endometrial regeneration using hyaluronic acid hydrogel containing recombinant human type III collagen. Int. J. Biol. Macromol. 268, 131723 (2024).
Google Scholar
Liu, H. et al. Advances in hydrogels in organoids and organs-on-a-chip. Adv. Mater. 31, e1902042 (2019).
Google Scholar
Mitrofanova, O. et al. Bioengineered human colon organoids with in vivo-like cellular complexity and function. Cell Stem Cell 31(1175–1186), e1177 (2024).
Nikolaev, M. et al. Homeostatic mini-intestines through scaffold-guided organoid morphogenesis. Nature 585, 574–578 (2020).
Google Scholar
Juárez-Barber, E. et al. Establishment of adenomyosis organoids as a preclinical model to study infertility. J. Personal. Med. 12, 219 (2022).
Google Scholar
link
