February 1, 2026
The use of artificial intelligence in sexual and reproductive health: a comprehensive scoping review
  • Okeibunor, J. C. et al. The use of artificial intelligence for delivery of essential health services across WHO regions: a scoping review. Front. Public Health 11, 1102185 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • World Health Organization. Regulatory Considerations on Artificial Intelligence for Health (World Health Organization, 2023).

  • Hernström, V. et al. Screening performance and characteristics of breast cancer detected in the Mammography Screening with Artificial Intelligence trial (MASAI): a randomised, controlled, parallel-group, non-inferiority, single-blinded, screening accuracy study. Lancet Digit. Health. (2025).

  • Kim, Y. H. Artificial intelligence in medical ultrasonography: driving on an unpaved road. Ultrasonography 40, 313–317 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Esmaeilzadeh, P. Challenges and strategies for wide-scale artificial intelligence (AI) deployment in healthcare practices: a perspective for healthcare organizations. Artif. Intell. Med. 151, 102861 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Locke, S. et al. Natural language processing in medicine: a review. Trends Anaesth. Crit. Care 38, 4–9 (2021).

    Google Scholar 

  • Pujari, S. et al. Artificial intelligence for global health: cautious optimism with safeguards. Bull. World Health Organ. 101, 364–364a (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rajpurkar, P., Chen, E., Banerjee, O. & Topol, E. J. AI in health and medicine. Nat. Med. 28, 31–38 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bauer, G. R. & Lizotte, D. J. Artificial intelligence, intersectionality, and the future of public health. Am. J. Public Health 111, 98–100 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Benke, K. & Benke, G. Artificial intelligence and big data in public health. Int J. Environ. Res Public Health 15, 1–9 (2018).

    Article 

    Google Scholar 

  • Bhatt, P., Liu, J., Gong, Y., Wang, J. & Guo, Y. Emerging artificial intelligence-empowered mhealth: scoping review. JMIR Mhealth Uhealth 10, e35053 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Young, S. D., Crowley, J. S. & Vermund, S. H. Artificial intelligence and sexual health in the USA. Lancet Digit. Health 3, e467–e468 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Saxena, A. K., Ness, S. & Khinvasara, T. The influence of AI: the revolutionary effects of artificial intelligence in healthcare sector. J. Eng. Res. Rep. 26, 49–62 (2024).

    Article 

    Google Scholar 

  • Gbagbo, F. Y., Ameyaw, E. K. & Yaya, S. Artificial intelligence and sexual reproductive health and rights: a technological leap towards achieving sustainable development goal target 3.7. Reprod. Health 21, 196 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Abou Chawareb, E. et al. Sexual health in the era of artificial intelligence: a review of the literature. J. Sex. Med. 21, 267–279 (2024).

    Article 

    Google Scholar 

  • Wasson, E. J., Driver, K., Hughes, M. & Bailey, J. Sexual reproductive health chatbots: should we be so quick to throw artificial intelligence out with the bathwater?. BMJ Sex. Reprod. Health 47, 73 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Mills, R., Mangone, E. R., Lesh, N., Mohan, D. & Baraitser, P. Chatbots to improve sexual and reproductive health: realist synthesis. J. Med. Internet. Res. 25, e46761 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Delanerolle, G. et al. Artificial intelligence: a rapid case for advancement in the personalization of Gynaecology/Obstetric and Mental Health care. Women’s Health 17, 1–2 (2021).

    Google Scholar 

  • Wang, R. et al. Artificial intelligence in reproductive medicine. Reproduction 158, R139–R154 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rolfes, V. et al. Artificial intelligence in reproductive medicine—an ethical perspective. Geburtshilfe Frauenheilkd. 83, 106–115 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Buslón, N., Cortés, A., Catuara-Solarz, S., Cirillo, D. & Rementeria, M. J. Raising awareness of sex and gender bias in artificial intelligence and health. Front Glob. Women’s Health 4, 970312 (2023).

    Article 

    Google Scholar 

  • World Health Organization. The Role of Artificial Intelligence in Sexual and Reproductive Health and Rights: Technical Brief (World Health Organization, 2024).

  • World Health Organization. Sexual and Reproductive Health Interventions in the WHO UHC Compendium (World Health Organization, 2021).

  • Khosla, R., Mishra, V. & Singh, S. Sexual and reproductive health and rights and bodily autonomy in a digital world. Sex. Reprod. Health Matters 31, 2269003 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chan, S. Y. et al. Computer-assisted image analysis of sperm concentration in human semen before and after swim-up separation: comparison with assessment by haemocytometer. Int. J. Androl. 12, 339–345 (1989).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bassil, H. E. & Dripps, J. H. Real time processing and analysis of fetal phonocardiographic signals. Clin. Phys. Physiol. Meas. 10, 67–74 (1989).

    Article 
    PubMed 

    Google Scholar 

  • Hu, H., Wang, H., Bai, Y. & Liu, M. Determination of endometrial carcinoma with gene expression based on optimized Elman neural network. Appl. Math. Comput. 341, 204–214 (2019).

    Google Scholar 

  • Boudet, S., Houzé de l’Aulnoit, A., Peyrodie, L., Demailly, R. & Houzé de l’Aulnoit, D. Use of deep learning to detect the maternal heart rate and false signals on fetal heart rate recordings. Biosensors. (2022).

  • Bano, S. et al. FetNet: a recurrent convolutional network for occlusion identification in fetoscopic videos. Int. J. Comput. Assist. Radio. Surg. 15, 791–801 (2020).

    Article 

    Google Scholar 

  • Potluri, V. et al. An inexpensive smartphone-based device for point-of-care ovulation testing. Lab Chip 19, 59–67 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Orel, E. et al. Prediction of HIV status based on socio-behavioural characteristics in East and Southern Africa. PLoS ONE 17, e0264429 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fox, H., Topp, S. M., Lindsay, D. & Callander, E. A cascade of interventions: a classification tree analysis of the determinants of primary cesareans in Australian public hospitals. Birth 48, 209–220 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Betts, K. S., Kisely, S. & Alati, R. Predicting common maternal postpartum complications: leveraging health administrative data and machine learning. Bjog 126, 702–709 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Khanam, R. et al. Performance of a validated spontaneous preterm delivery predictor in South Asian and Sub-Saharan African women: a nested case control study. J. Matern. Fetal Neonatal Med. 35, 8878–8886 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jehan, F. et al. Multiomics characterization of preterm birth in low- and middle-income countries. JAMA Netw. Open 3, e2029655 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hossain, M. I. et al. Performance evaluation of machine learning algorithm for classification of unintended pregnancy among married women in Bangladesh. J. Healthc. Eng. 2022, 1460908 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Boucher, J. C. et al. HPV vaccine narratives on Twitter during the COVID-19 pandemic: a social network, thematic, and sentiment analysis. BMC Public Health 23, 694 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Du, J., Xu, J., Song, H. Y. & Tao, C. Leveraging machine learning-based approaches to assess human papillomavirus vaccination sentiment trends with Twitter data. BMC Med. Inf. Decis. Mak. 17, 69 (2017).

    Article 

    Google Scholar 

  • Luo, X., Zimet, G. & Shah, S. A natural language processing framework to analyse the opinions on HPV vaccination reflected in Twitter over 10 years (2008–2017). Hum. Vaccin Immunother. 15, 1496–1504 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Valdez, D. & Goodson, P. Neutral or framed? A sentiment analysis of 2019 abortion laws. Sex. Res. Soc. Policy 19, 936–945 (2022).

    Article 

    Google Scholar 

  • Fatima, I. et al. Prediction of postpartum depression using machine learning techniques from social media text. Expert Syst. 36, e12409 (2019).

    Article 

    Google Scholar 

  • Chivers, B. R. et al. Perinatal distress during COVID-19: thematic analysis of an online parenting forum. J. Med. Internet. Res. 22, e22002 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ravaldi, C., Mosconi, L., Bonaiuti, R. & Vannacci, A. The emotional landscape of pregnancy and postpartum during the COVID-19 pandemic in Italy: a mixed-method analysis using artificial intelligence. J. Clin. Med. 12, 6140 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gardiner, P. et al. Using health information technology to engage African American women on nutrition and supplement use during the preconception period. Front Endocrinol. 11, 571705 (2020).

    Article 

    Google Scholar 

  • Jack, B. et al. Reducing Preconception Risks Among African American Women with Conversational Agent Technology. J. Am. Board Fam. Med. 28, 441–451 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Bonnevie, E. et al. Layla’s Got You: developing a tailored contraception chatbot for Black and Hispanic young women. Health Educ. J. 80, 413–424 (2021).

    Article 

    Google Scholar 

  • Peng, M. L. et al. Formative evaluation of the acceptance of HIV prevention artificial intelligence chatbots by men who have sex with men in Malaysia: focus group study. JMIR Form. Res. 6, e42055 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, H. et al. An artificial intelligence chatbot for young people’s sexual and reproductive health in India (SnehAI): instrumental case study. J. Med. Internet. Res. 24, e29969 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fragoulakis, V. et al. Follitropin Alpha for assisted reproduction: an analysis based on a non-interventional study in Greece. Curr. Med. Res. Opin. 38, 2227–2235 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Zang, X. et al. Prioritizing additional data collection to reduce decision uncertainty in the HIV/AIDS response in 6 US cities: a value of information analysis. Value Health 23, 1534–1542 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, Y. et al. Machine-learning predictive model of pregnancy-induced hypertension in the first trimester. Hypertension Res. 46, 2135–2144 (2023).

    Article 

    Google Scholar 

  • Cubillos, G. et al. Development of machine learning models to predict gestational diabetes risk in the first half of pregnancy. BMC Pregnancy Childbirth 23, 469 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, J. et al. Machine learning-based prediction of postpartum hemorrhage after vaginal delivery: combining bleeding high risk factors and uterine contraction curve. Arch. Gynecol. Obstet. 306, 1015–1025 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Zhu, H. et al. A computerized diagnostic model for automatically evaluating placenta accrete spectrum disorders based on the combined MR radiomics-clinical signatures. Sci. Rep. 12, 10130 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, L., Tian, Y., Deng, Y. & Abdulhay, E. Neural network algorithm-based three-dimensional ultrasound evaluation in the diagnosis of fetal spina bifida. Sci. Program. 2021, 3605739 (2021).

    Google Scholar 

  • Gong, Y. et al. Fetal congenital heart disease echocardiogram screening based on DGACNN: adversarial one-class classification combined with video transfer learning. IEEE Trans. Med. Imaging 39, 1206–1222 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Song, F. et al. Predicting the risk of fetal growth restriction by radiomics analysis of the placenta on T2WI: a retrospective case-control study. Placenta 134, 15–22 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Miyagi, Y. & Miyake, T. Potential of artificial intelligence for estimating Japanese fetal weights. Acta Med Okayama. (2020).

  • Veerabhadrappa, S. T. & Vyas, A. L. Analysis and classification of three trimesters during normal pregnancy using bispectrum. IETE J. Res. 68, 2697–2706 (2022).

    Article 

    Google Scholar 

  • Xiao, Y., Lu, Y., Liu, M., Zeng, R. & Bai, J. A deep feature fusion network for fetal state assessment. Front Physiol. 13, 969052 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • De Ramón Fernández, A., Ruiz Fernández, D. & Prieto Sánchez, M. T. Prediction of the mode of delivery using artificial intelligence algorithms. Comput. Methods Prog. Biomed. 219, 106740 (2022).

    Article 

    Google Scholar 

  • Guedalia, J. et al. Transporting an artificial intelligence model to predict emergency cesarean delivery: overcoming challenges posed by interfacility variation. J. Med. Internet. Res. 23, e28120 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yu, S., Tan, K. K., Sng, B. L., Li, S. & Sia, A. T. H. Lumbar ultrasound image feature extraction and classification with support vector machine. Ultrasound Med. Biol. 41, 2677–2689 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Bodnar, L. M. et al. Machine learning as a strategy to account for dietary synergy: an illustration based on dietary intake and adverse pregnancy outcomes. Am. J. Clin. Nutr. 111, 1235–1243 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fang, H., Johnson, C., Stopp, C. & Espy, K. A. A new look at quantifying tobacco exposure during pregnancy using fuzzy clustering. Neurotoxicol. Teratol. 33, 155–165 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, Q. et al. Effect of airborne particulate matter of 2.5μm or less on preterm birth: a national birth cohort study in China. Environ. Int. 121, 1128–1136 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Roh, M. E. et al. Association between indoor residual spraying and pregnancy outcomes: a quasi-experimental study from Uganda. Int. J. Epidemiol. 51, 1489–1501 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Amit, G. et al. Estimation of postpartum depression risk from electronic health records using machine learning. BMC Pregnancy Childbirth 21, 630 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Betts, K. S., Kisely, S. & Alati, R. Predicting postpartum psychiatric admission using a machine learning approach. J. Psychiatr. Res. 130, 35–40 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Fischbein, R., Cook, H. L., Baughman, K. & Díaz, S. R. Using machine learning to predict help-seeking among 2016–2018 Pregnancy Risk Assessment Monitoring System participants with postpartum depression symptoms. Women’s. Health 18, 17455057221139664 (2022).

    CAS 
    PubMed Central 

    Google Scholar 

  • Gopalakrishnan, A., Venkataraman, R., Gururajan, R., Zhou, X. & Zhu, G. Predicting women with postpartum depression symptoms using machine learning techniques. Mathematics 10, 4570 (2022).

    Article 

    Google Scholar 

  • Khapre, S., Stewart, R. & Taylor, C. An evaluation of symptom domains in the 2 years before pregnancy as predictors of relapse in the perinatal period in women with severe mental illness. Eur. Psychiatry 64, e26 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shatte, A. B. R., Hutchinson, D. M., Fuller-Tyszkiewicz, M. & Teague, S. J. Social media markers to identify fathers at risk of postpartum depression: a machine learning approach. Cyberpsychol. Behav. Soc. Netw. 23, 611–618 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Zhang, Y., Wang, S., Hermann, A., Joly, R. & Pathak, J. Development and validation of a machine learning algorithm for predicting the risk of postpartum depression among pregnant women. J. Affect. Disord. 279, 1–8 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Lu, Q. et al. Longitudinal metabolomics integrated with machine learning identifies novel biomarkers of gestational diabetes mellitus. Free Radic. Biol. Med. 209, 9–17 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Eguchi, A., Sakurai, K., Watanabe, M. & Mori, C. Exploration of potential biomarkers and related biological pathways for PCB exposure in maternal and cord serum: a pilot birth cohort study in Chiba, Japan. Environ. Int. 102, 157–164 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Demailly, R., Escolano, S., Haramburu, F., Tubert-Bitter, P. & Ahmed, I. Identifying drugs inducing prematurity by mining claims data with high-dimensional confounder score strategies. Drug Saf. 43, 549–559 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Chen, S. et al. Association of the LEP gene with immune infiltration as a diagnostic biomarker in preeclampsia. Front. Mol. Biosci. (2023).

  • Jihong, C. et al. Automated intensity modulated radiation therapy treatment planning for cervical cancer based on convolution neural network. Technol. Cancer Res. Treat. 19, 1533033820957002 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ecker, S. et al. Neural network-assisted automated image registration for MRI-guided adaptive brachytherapy in cervical cancer. Z. Med. Phys. 32, 488–499 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chauhan, N. K., Singh, K., Kumar, A. & Kolambakar, S. B. HDFCN: a robust hybrid deep network based on feature concatenation for cervical cancer diagnosis on WSI pap smear slides. BioMed. Res. Int. 2023, 4214817 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bhuvaneshwari, K. & Poornima, B. Cervical cancer cell identification & detection using fuzzy C mean and K nearest neighbor techniques. Int. J. Innov. Technol. Explor. Eng. 8, 1080–1084 (2019).

    Article 

    Google Scholar 

  • Lefebvre, T. L. et al. Development and validation of multiparametric MRI-based radiomics models for preoperative risk stratification of endometrial cancer. Radiology 305, 375–386 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Moro, F. et al. Developing and validating ultrasound-based radiomics models for predicting high-risk endometrial cancer. Ultrasound Obstet. Gynecol. 60, 256–268 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ahmed, M. R., Rehana, H. & Asaduzzaman, S. Ovarian cancer substantial risk factor analysis by machine learning: a low incoming country perspective. Biointerface Res. Appl. Chem. 11, 8457–8466 (2020).

  • Amarsee, K. et al. Automatic detection and tracking of marker seeds implanted in prostate cancer patients using a deep learning algorithm. J. Med. Phys. 46, 80–87 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Grimley, P. M. et al. A prognostic system for epithelial ovarian carcinomas using machine learning. Acta Obstet. Gynecol. Scand. 100, 1511–1519 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Paik, E. S. et al. Prediction of survival outcomes in patients with epithelial ovarian cancer using machine learning methods. J. Gynecol. Oncol. 30, e65 (2019).

  • Ling, Y., Zhang, W., Li, Z., Pu, X. & Ren, Y. Application and comparison of several machine learning methods in the prognosis of cervical cancer. Eur. J. Gynaecol. Oncol. 43, 34–44 (2022).

    Google Scholar 

  • Maurya, S. et al. Morphological analysis of metabolically dysregulated spermatozoa using Artificial Intelligence based approach. J. Integr. Sci. Technol. 11, 569–569 (2023).

    Google Scholar 

  • Aristoteles, A., Syarif, A., Sutyarso, S. & Lumbanraja, F. R. Identification of human sperm based on morphology using the you only look once version 4 algorithm. Int. J. Adv. Comput. Sci. Appl. 13, 424–431 (2022).

    Google Scholar 

  • Hassan, M. R., Al-Insaif, S., Hossain, M. I. & Kamruzzaman, J. A machine learning approach for prediction of pregnancy outcome following IVF treatment. Neural Comput. Appl. 32, 2283–2297 (2020).

    Article 

    Google Scholar 

  • Amini, P. et al. Factors associated with in vitro fertilization live birth outcome: a comparison of different classification methods. Int. J. Fertil. Steril. 15, 128 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Huang, B. et al. Using deep learning to predict the outcome of live birth from more than 10,000 embryo data. BMC Pregnancy Childbirth 22, 36 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Uyar, A., Bener, A. & Ciray, H. N. Predictive modeling of implantation outcome in an in vitro fertilization setting: an application of machine learning methods. Med. Decis. Mak. 35, 714–725 (2015).

    Article 

    Google Scholar 

  • Wang, R. et al. AI-Based Optimal Treatment Strategy Selection for Female Infertility for First and Subsequent IVF-ET Cycles. J. Med. Syst. 47, 87 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mehrjerd, A., Rezaei, H., Eslami, S., Ratna, M. B. & Khadem Ghaebi, N. Internal validation and comparison of predictive models to determine success rate of infertility treatments: a retrospective study of 2485 cycles. Sci. Rep. 12, 7216 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Targosz, A., Przystałka, P., Wiaderkiewicz, R. & Mrugacz, G. Semantic segmentation of human oocyte images using deep neural networks. Biomed. Eng. OnLine 20, 40 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bormann, C. L. et al. Consistency and objectivity of automated embryo assessments using deep neural networks. Fertil. Steril. 113, 781–787.e781 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dirvanauskas, D., Maskeliunas, R., Raudonis, V. & Damasevicius, R. Embryo development stage prediction algorithm for automated time lapse incubators. Comput. Methods Prog. Biomed. 177, 161–174 (2019).

    Article 

    Google Scholar 

  • Wald, M. et al. Computational models for prediction of IVF/ICSI outcomes with surgically retrieved spermatozoa. Reprod. Biomed. Online 11, 325–331 (2005).

    Article 
    PubMed 

    Google Scholar 

  • Tian, T. et al. A Bayesian network model for prediction of low or failed fertilization in assisted reproductive technology based on a large clinical real-world data. Reprod. Biol. Endocrinol. 21, 8 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hicks, S. A. et al. Machine learning-based analysis of sperm videos and participant data for male fertility prediction. Sci. Rep. 9, 16770 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, M. et al. Evaluation of endometrial receptivity by ultrasound elastography to predict pregnancy outcome is a non-invasive and worthwhile method. Biotechnol. Genet Eng. Rev. 40, 284–298 (2024).

    PubMed 

    Google Scholar 

  • Koesoema Wijaya, R. A., Kusumaatmaja, A. & Rizal, D. M. Novel method to classify varicocele using electronic nose. Indones. J. Electr. Eng. Comput. Sci. 28, 165–173 (2022).

  • Mukherjee, G., Zhang, C., Kandaswamy, S., Gooding, H. & Orenstein, E. Current inpatient screening practices for sexual history and STIs: an opportunity to seize. Clin. Pediatr. 63, 350–356 (2024).

    Article 

    Google Scholar 

  • Wray, T. B. et al. Using smartphone survey data and machine learning to identify situational and contextual risk factors for HIV risk behavior among men who have sex with men who are not on PrEP. Prev. Sci. 20, 904–913 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Parra-Rodriguez, L. et al. Common antiretroviral combinations are associated with somatic depressive symptoms in women with HIV. AIDS 38, 167–176 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yang, X. et al. Utilizing electronic health record data to understand comorbidity burden among people living with HIV: a machine learning approach. AIDS 35, S39–S51 (2021).

    Article 
    PubMed 

    Google Scholar 

  • González-Prieto, Á, Brú, A., Nuño, J. C. & González-Álvarez, J. L. Hybrid machine learning methods for risk assessment in gender-based crime. Knowl. Based Syst. 260, 110130 (2023).

    Article 

    Google Scholar 

  • McDougal, L. et al. Opening closed doors: using machine learning to explore factors associated with marital sexual violence in a cross-sectional study from India. BMJ Open 11, e053603 (2021).

    Article 
    PubMed Central 

    Google Scholar 

  • Silva, M. et al. Gender-based violence narratives in internet-based conversations in Nigeria: social listening study. J. Med. Internet. Res. 25, e46814 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Orts Llopis, M. Á. Las leyes sobre la vioLencia de género y doméstica en España y Reino Unido y la emoción: un estUdio léxico deL discUrso jUrídico desde eL anáLisis deL sentimiento. Rev. Llen. Dret 71, 171–192 (2019).

  • Udomboso, C. G. & Amoateng, A. Modelling trends in contraception usage in Nigeria and Ghana. J. Health Manag. 20, 277–290 (2018).

    Article 

    Google Scholar 

  • Liew, T. W., Tan, S.-M., Yoo, N. E., Gan, C. L. & Lee, Y. Y. Let’s talk about Sex!: AI and relational factors in the adoption of a chatbot conveying sexual and reproductive health information. Comput. Hum. Behav. Rep. 11, 100323 (2023).

    Article 

    Google Scholar 

  • Nadarzynski, T., Bayley, J., Llewellyn, C., Kidsley, S. & Graham, C. A. Acceptability of artificial intelligence (AI)-enabled chatbots, video consultations and live webchats as online platforms for sexual health advice. BMJ Sex. Reprod. Health 46, 210–217 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Stevens, R. et al. On sex, drugs, and alcohol: a mixed-method analysis of youth posts on social media in the United States. J. Child. Media 16, 514–531 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Selskyy, P., Sverstiuk, A., Slyva, A. & Selskyi, B. Prediction of the progression of endometrial hyperplasia in women of premenopausal and menopausal age based on an analysis of clinical and anamnestic indicators using multiparametric neural network clustering. Fam. Med. Prim. Care Rev. 25, 184–189 (2023).

  • Thawnashom, K., Pornsawad, P. & Makond, B. Machine learning’s performance in classifying postmenopausal osteoporosis Thai patients. Intell. Based Med. 7, 100099 (2023).

    Article 

    Google Scholar 

  • Zeitlin, J., Parides, M. K., Lane, J. M., Russell, L. A. & Kunze, K. N. A clinical prediction model for 10-year risk of self-reported osteoporosis diagnosis in pre-and perimenopausal women. Arch. Osteoporos. 18, 78 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Chao, Q. et al. Menopausal women’s health care method based on computer nursing diagnosis intelligent system. J. Healthc. Eng. 2021, 4963361 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Swanson, K. et al. Effect of recent abortion legislation on Twitter user engagement, sentiment, and expressions of trust in clinicians and privacy of health information: content analysis. J. Med. Internet. Res. 25, e46655 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ujah, O. I., Olaore, P., Nnorom, O. C., Ogbu, C. E. & Kirby, R. S. Examining ethno-racial attitudes of the public in Twitter discourses related to the United States Supreme Court Dobbs vs. Jackson Women’s Health Organization ruling: a machine learning approach. Front. Global Women’s Health. (2023).

  • Valdez, D., Jozkowski, K. N., Montenegro, M. S., Crawford, B. L. & Jackson, F. Identifying accurate pro-choice and pro-life identity labels in Spanish: social media insights and implications for comparative survey research. Perspect. Sex. Reprod. Health 54, 166–176 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Alabi, O. et al. Robust fetoscopic mosaicking from deep learned flow fields. Int. J. Comput. Assist. Radiol. Surg. 17, 1125–1134 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Płotka, S. S. et al. Deep learning for estimation of fetal weight throughout the pregnancy from fetal abdominal ultrasound. Am. J. Obstetr. Gynecol. MFM. (2023).

  • Shahzad, S. et al. Sperm abnormality detection using sequential deep neural network. Mathematics 11, 515 (2023).

    Article 

    Google Scholar 

  • Xia, T.-H. et al. Establish a normal fetal lung gestational age grading model and explore the potential value of deep learning algorithms in fetal lung maturity evaluation. Chin. Med. J. 134, 1828–1837 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yeo, L. & Romero, R. Fetal Intelligent Navigation Echocardiography (FINE): a novel method for rapid, simple, and automatic examination of the fetal heart. Ultrasound Obstet. Gynecol. 42, 268–284 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hariton, E. et al. A machine learning algorithm can optimize the day of trigger to improve in vitro fertilization outcomes. Fertil. Steril. 116, 1227–1235 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Letterie, G. & Mac Donald, A. Artificial intelligence in in vitro fertilization: a computer decision support system for day-to-day management of ovarian stimulation during in vitro fertilization. Fertil. Steril. 114, 1026–1031 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mirroshandel, S. A., Ghasemian, F. & Monji-Azad, S. Applying data mining techniques for increasing implantation rate by selecting best sperms for intra-cytoplasmic sperm injection treatment. Comput. Methods Prog. Biomed. 137, 215–229 (2016).

    Article 

    Google Scholar 

  • Wang, Y. et al. Task model-specific operator skill assessment in routine fetal ultrasound scanning. Int. J. Comput. Assist. Radiol. Surg. 17, 1437–1444 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Guh, R.-S., Wu, T.-C. J. & Weng, S.-P. Integrating genetic algorithm and decision tree learning for assistance in predicting in vitro fertilization outcomes. Expert Syst. Appl. 38, 4437–4449 (2011).

    Article 

    Google Scholar 

  • Lu, H., Hirst, J., Yang, J., Mackillop, L. & Clifton, D. Standardising the assessment of caesarean birth using an Oxford caesarean prediction score for mothers with gestational diabetes. Health. Technol. Lett. 9, 1–8 (2022).

    Article 

    Google Scholar 

  • Ekpenyong, M. E., Etebong, P. I. & Jackson, T. C. Fuzzy-multidimensional deep learning for efficient prediction of patient response to antiretroviral therapy. Heliyon 5, e02080 (2019).

  • Bulka, C. M. et al. Arsenic in private well water and birth outcomes in the United States. Environ. Int. 163, 107176 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Klein, A. Z., Sarker, A., Weissenbacher, D. & Gonzalez-Hernandez, G. Towards scaling Twitter for digital epidemiology of birth defects. NPJ Digit. Med. 2, 96 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ailes, E. C. et al. Using supervised learning methods to develop a list of prescription medications of greatest concern during pregnancy. Matern. Child Health J. 24, 901–910 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ghasemi, G. & Nemati-Rashtehroodi, A. QSAR modeling of benzimidazole derivatives as potent inhibitors of trichomoniasis/QSAR modellemesi ile Benzimidazole türevlerinin trikomoniasis için etkili inhibitörler olarak kullanılması. Turkish J. Biochem. 40, 492–499 (2015).

    Article 

    Google Scholar 

  • Kang, L. et al. Structure-activity relationship (SAR) model for predicting teratogenic risk of antiseizure medications in pregnancy by using support vector machine. Front Pharm. 13, 747935 (2022).

    Article 
    CAS 

    Google Scholar 

  • Bickmore, T., Zhang, Z., Reichert, M., Julce, C. & Jack, B. Promotion of preconception care among adolescents and young adults by conversational agent. J. Adolesc. Health 67, S45–S51 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Chervenak, J., Lieman, H., Blanco-Breindel, M. & Jindal, S. The promise and peril of using a large language model to obtain clinical information: ChatGPT performs strongly as a fertility counseling tool with limitations. Fertil. Steril. 120, 575–583 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Qin, M., Xu, Y., Liang, Y. & Sun, T. A wearable fetal movement detection system for pregnant women. Front. Med. 10, 1160373 (2023).

    Article 

    Google Scholar 

  • Jennings, V., Haile, L. T., Simmons, R. G., Spieler, J. & Shattuck, D. Perfect-and typical-use effectiveness of the Dot fertility app over 13 cycles: results from a prospective contraceptive effectiveness trial. Eur. J. Contracept. Reprod. Health Care 24, 148–153 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Sexual and reproductive health interventions in the WHO UHC Compendium https://www.who.int/publications/i/item/9789240022867.

  • Haugen, T. B. et al. Sperm motility assessed by deep convolutional neural networks into WHO categories. Sci. Rep. 13, 14777 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gunderson, S. J. et al. Machine-learning algorithm incorporating capacitated sperm intracellular pH predicts conventional in vitro fertilization success in normospermic patients. Fertil. Steril. 115, 930–939 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Merz, A. A. et al. Population attitudes toward contraceptive methods over time on a social media platform. Am. J. Obstet. Gynecol. 224, 597.e591–597.e514 (2021).

    Article 

    Google Scholar 

  • Du, J. et al. Use of deep learning to analyze social media discussions about the human papillomavirus vaccine. JAMA Netw. Open 3, e2022025 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Movaghar, A., Mailick, M., Sterling, A., Greenberg, J. & Saha, K. Automated screening for Fragile X premutation carriers based on linguistic and cognitive computational phenotypes. Sci. Rep. 7, 2674 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shara, N. et al. Early identification of maternal cardiovascular risk through sourcing and preparing electronic health record data: machine learning study. JMIR Med. Inform. 10, e34932 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Klein, A. Z. & Gonzalez-Hernandez, G. An annotated data set for identifying women reporting adverse pregnancy outcomes on Twitter. Data Brief. 32, 106249 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rigla, M., Martínez-Sarriegui, I., García-Sáez, G., Pons, B. & Hernando, M. E. Gestational diabetes management using smart mobile telemedicine. J. Diab. Sci. Technol. 12, 260–264 (2018).

    Article 

    Google Scholar 

  • Kim, T. The impact of working hours on pregnancy intention in childbearing-age women in Korea, the country with the world’s lowest fertility rate. PLoS ONE 18, e0288697 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Day, T. G. et al. Prenatal diagnosis of hypoplastic left heart syndrome on ultrasound using artificial intelligence: how does performance compare to a current screening programme?. Prenat. Diagn. 44, 717–724 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Wang, F., Mao, R., Yan, L., Ling, S. & Cai, Z. A deep learning-based approach for rectus abdominis segmentation and distance measurement in ultrasonography. Front Physiol. 14, 1246994 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Marcus, J. L. et al. Use of electronic health record data and machine learning to identify candidates for HIV pre-exposure prophylaxis: a modelling study. Lancet HIV 6, e688–e695 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • MacDowell, M. et al. Understanding birthing mode decision making using artificial neural networks. Med Decis. Mak. 21, 433–443 (2001).

    Article 
    CAS 

    Google Scholar 

  • Zhao, M. et al. Identification and immuno-infiltration analysis of cuproptosis regulators in human spermatogenic dysfunction. Front. Genet. 14, 1115669 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Candemir, C. Estimating the semen quality from life style using fuzzy radial basis functions. Int. J. Mach. Learn. Comput. 8, 44–48 (2018).

    Article 

    Google Scholar 

  • Fraiwan, L. et al. Time frequency analysis for automated sleep stage identification in fullterm and preterm neonates. J. Med. Syst. 35, 693–702 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Sadda, P. et al. Deep-learned placental vessel segmentation for intraoperative video enhancement in fetoscopic surgery. Int. J. Comput. Assist. Radiol. Surg. 14, 227–235 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Stockman, J., Friedman, J., Sundberg, J., Harris, E. & Bailey, L. Predictive analytics using machine learning to identify ART clients at health system level at greatest risk of treatment interruption in Mozambique and Nigeria. J. Acquir. Immune Defic. Syndr. 90, 154–160 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Das, R. et al. Performance analysis of machine learning algorithms and screening formulae for β-thalassemia trait screening of Indian antenatal women. Int. J. Med. Inf. 167, 104866 (2022).

    Article 

    Google Scholar 

  • Katebi, N., Sameni, R., Rohloff, P. & Clifford, G. D. Hierarchical attentive network for gestational age estimation in low-resource settings. IEEE J. Biomed. Health Inf. 27, 2501–2511 (2023).

    Article 

    Google Scholar 

  • Kulkarni, S. S., Katebi, N., Valderrama, C. E., Rohloff, P. & Clifford, G. D. CNN-based LCD transcription of blood pressure from a mobile phone camera. Front Artif. Intell. 4, 543176 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schilpzand, M. et al. Automatic placenta localization from ultrasound imaging in a resource-limited setting using a predefined ultrasound acquisition protocol and deep learning. Ultrasound Med. Biol. 48, 663–674 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Simplified models to assess newborn gestational age in low-middle income countries: findings from a multicountry, prospective cohort study. BMJ Glob Health. (2021).

  • Revell, A. D. et al. An update to the HIV-TRePS system: the development of new computational models that do not require a genotype to predict HIV treatment outcomes. J. Antimicrob. Chemother. 69, 1104–1110 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gomes, R. G. et al. A mobile-optimized artificial intelligence system for gestational age and fetal malpresentation assessment. Commun. Med. 2, 128 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Revell, A. D. et al. 2021 update to HIV-TRePS: a highly flexible and accurate system for the prediction of treatment response from incomplete baseline information in different healthcare settings. J. Antimicrob. Chemother. 76, 1898–1906 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Holmström, O. et al. Point-of-care digital cytology with artificial intelligence for cervical cancer screening in a resource-limited setting. JAMA Netw. Open 4, e211740 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jaganath, D. et al. Evaluation of multi-antigen serological screening for active tuberculosis among people living with HIV. PLoS ONE 15, e0234130 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kebede, S. D. et al. Prediction of contraceptive discontinuation among reproductive-age women in Ethiopia using Ethiopian Demographic and Health Survey 2016 Dataset: a Machine Learning Approach. BMC Med. Inform. Decis. Mak. 23, 9 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Togunwa, T. O., Babatunde, A. O. & Abdullah, K. -u-R. Deep hybrid model for maternal health risk classification in pregnancy: synergy of ANN and random forest. Front. Artif. Intell. 6, 1213436 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rittenhouse, K. J. et al. Improving preterm newborn identification in low-resource settings with machine learning. PLoS ONE 14, e0198919 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bahado-Singh, R. et al. Cell-free DNA in maternal blood and artificial intelligence: accurate prenatal detection of fetal congenital heart defects. Am. J. Obstet. Gynecol. 228, 76.e71–76.e10 (2023).

    Article 

    Google Scholar 

  • Dabi, Y. et al. Endometriosis-associated infertility diagnosis based on saliva microRNA signatures. Reprod. Biomed. online 46, 138–149 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sivasankaran, S. & Jonnalagadda, S. Levonorgestrel loaded biodegradable microparticles for injectable contraception: preparation, characterization and modelling of drug release. Int. J. Pharmaceut. 624, 121994 (2022).

    Article 
    CAS 

    Google Scholar 

  • Fan, Z. et al. CAM-VT: A weakly supervised cervical cancer nest image identification approach using conjugated attention mechanism and visual transformer. Comput. Biol. Med. 162, 107070 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lin, Q. & Fang, Z.-J. Establishment and evaluation of a risk prediction model for gestational diabetes mellitus. World J. Diab. 14, 1541 (2023).

    Article 

    Google Scholar 

  • Alowais, S. A. et al. Revolutionizing healthcare: the role of artificial intelligence in clinical practice. BMC Med. Educ. 23, 689 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Russell, S. J. Artificial Intelligence: A Modern Approach. Third edition edn (Prentice Hall, 2010).

  • Masilamani, V. et al. Leveraging artificial intelligence for advancements in reproductive health. Afr. J. Reprod. Health 28, 216–217 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Cruz Rivera, S., Liu, X., Chan, A. W., Denniston, A. K. & Calvert, M. J. Guidelines for clinical trial protocols for interventions involving artificial intelligence: the SPIRIT-AI extension. Lancet Digit. Health 2, e549–e560 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Liu, X., Cruz Rivera, S., Moher, D., Calvert, M. J. & Denniston, A. K. Reporting guidelines for clinical trial reports for interventions involving artificial intelligence: the CONSORT-AI extension. Nat. Med. 26, 1364–1374 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Arksey, H. & O’Malley, L. Scoping studies: towards a methodological framework. Int. J. Soc. Res. Methodol. 8, 19–32 (2005).

    Article 

    Google Scholar 

  • Tamrat, T. et al. Exploring the use and implications of AI in sexual and reproductive health and rights: protocol for a scoping review. JMIR Res. Protoc. 13, e53888 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fox, M. P., Lash, T. L. & Bodnar, L. M. Common misconceptions about validation studies. Int J. Epidemiol. 49, 1392–1396 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Carlson, M. D. & Morrison, R. S. Study design, precision, and validity in observational studies. J. Palliat. Med 12, 77–82 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rubinger, L., Gazendam, A., Ekhtiari, S. & Bhandari, M. Machine learning and artificial intelligence in research and healthcare. Injury 54, S69–S73 (2023).

    Article 
    PubMed 

    Google Scholar 

  • World Health Organization. Monitoring and Evaluating Digital Health Interventions: A Practical Guide to Conducting Research and Assessment (World Health Organization, 2016).

  • Zhang, C., Fan, C., Yao, W., Hu, X. & Mostafavi, A. Social media for intelligent public information and warning in disasters: an interdisciplinary review. Int. J. Inf. Manag. 49, 190–207 (2019).

    Google Scholar 

  • Barbounaki, S. G., Gourounti, K. & Sarantaki, A. Advances of sentiment analysis applications in obstetrics/gynecology and midwifery. Mater. Sociomed. 33, 225–230 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • World Health Organization. Classification of Digital Interventions, Services and Applications in Health: A Shared Language to Describe the Uses of Digital Technology for Health, 2nd edn (World Health Organization, 2023).

  • Metreau, E., Young, K. & Eapen, S. World Bank country classifications by income level for 2024–2025. World Bank Blogs. (2024).

  • Ng, M. Y., Kapur, S., Blizinsky, K. D. & Hernandez-Boussard, T. The AI life cycle: a holistic approach to creating ethical AI for health decisions. Nat. Med. 28, 2247–2249 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *